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1 Methods

This Online Appendix provides details about the analytical and numerical procedures to

bound the CEF and functions of the CEF. These methods are straightforward applications of

Novosad et al. (2020). In Appendix 1.1 and Appendix 1.2, we reproduce the text of several

propositions contained in Novosad et al. (2020) for ease of reference, but relegate the proofs

to Novosad et al. (2020). In Appendix 1.3, we explain the simple procedure to adapt the

numerical techniques in Novosad et al. (2020) to this setting.

Relationship to Novosad et al. (2020). Novosad et al. (2020) is concerned with esti-

mating bounds onE(y|x=i) and various functions of that CEF, where x is an interval-censored
adult education rank and y is that same adult’s mortality rate. This paper is concerned with

the same mathematical problem, where x is an interval-censored parent education rank and y

is a measure of child socioeconomic status. Note that the monotonicity condition here is similar

to that in Novosad et al. (2020). Here, we assume child status is increasing in parent education

rank; Novosad et al. (2020) assumes adult survivalship is increasing in adult education rank.

1.1 Formal Statement of Proposition 1

Let the function Y (x) =E(y|x) be defined on [0,100]. Form the set of non-overlapping

intervals [xk,xk+1] that cover [0,100] for k∈{1,...,K}. We seek to bound E(y|x) when x
is known to lie in the interval [xk,xk+1]; there are K such intervals. Suppose that

x∼U(0,100), (Assumption U)

and define

rk :=
1

xk+1−xk

∫ xk+1

xk

Y (x)dx.
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Adopt the following assumptions from Manski and Tamer (2002):

Prob(x∈ [xk,xk+1])=1. (Assumption I)

E(y|x) must be weakly increasing in x. (Assumption M)

E(y|x, x is interval censored)=E(y|x). (Assumption MI)

Proposition 1. Let x be in bin k. Under assumptions M, I, MI (Manski and Tamer, 2002)

and U, and without additional information, the following bounds on E(y|x) are sharp:rk−1≤E(y|x)≤ 1
xk+1−x

((xk+1−xk)rk−(x−xk)rk−1), x<x∗k
1

x−xk
((xk+1−xk)rk−(xk+1−x)rk+1)≤E(y|x)≤rk+1, x≥x∗k

where

x∗k=
xk+1rk+1−(xk+1−xk)rk−xkrk−1

rk+1−rk−1
.

1.2 Formal Statement of Analytical Bounds on µba

We now state a proposition, also contained in Novosad et al. (2020), that permits us to

bound µba.

Define

µba=
1

b−a

∫ b

a

E(y|x)di.

Let Y min
x and Y max

x be the lower and upper bounds respectively on E(y|x) given by

Proposition 1. We seek to bound µba when x is only known to lie in some interval [xk,xk+1].

Proposition 2. Let b∈ [xk,xk+1] and a∈ [xh,xh+1] with a<b. Let assumptions M, I, MI

(Manski and Tamer, 2002) and U hold. Then, if there is no additional information available,

the following bounds are sharp:
Y min
b ≤µba≤Y max

a , h=k

rh(xk−a)+Yminb (b−xk)
b−a ≤µba≤

Ymaxa (xk−a)+rk(b−xk)
b−a , h+1=k

rh(xh+1−a)+
∑k−1
λ=h+1rλ(xλ+1−xλ)+Yminb (b−xk)

b−a ≤µba≤
Ymaxa (xh+1−a)+

∑k−1
λ=h+1rλ(xλ+1−xλ)+rk(b−xk)

b−a , h+1<k.
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1.3 Bounding Functions of the CEF

We now describe our procedure for bounding arbitrary functions of the CEF. We conduct

the following process.

1. Consider the set of CEFs that can: (a) match the observed mean levels of child rank

within each parent rank bin, and (b) are consistent with any additional assumptions (e.g.,

monotonocity and/or smoothness assumptions).

2. For every CEF in this set, generate a function of the CEF. Report the maximum and

minimum value of this function, collecting values over all CEFs in this set.

Formally, index interval-censored bins by k: define the non-overlapping intervals [xk,xk+1]

that cover [0,100] for k∈{1,...,K}. Then define {rk}Kk=1 as the set of observed mean values

of y over each bin k∈{1,...,K}. Further define S({rk}Kk=1) to be the collection of CEFs

that is consistent with these bin means and any desired auxiliary assumptions. For example,

noting that x is uniformly distributed, we can put:

S
(
{rk}Kk=1

)
=
{
Y (x)| Y (x) is weakly increasing

}
⋂ {

Y (x)
∣∣∣ 1

xk+1−xk

∫ xk+1

xk

(Y (x)−rk(x))dx=0, for all k
}
. (1.1)

Our objective is to bound γ=γ(Y ), some function of the CEF. In particular, we face the

following constrained optimization problem to obtain the maximum and minimum values of γ:

γmin= min
Y∈S({rk}Kk=1)

γ̃(Y ) (1.2)

γmax= max
Y∈S({rk}Kk=1)

γ̃(Y ). (1.3)

Novosad et al. (2020) provide details on the numerical techniques used to solve this problem.

The bounds we report are the set [γmin,γmax]. We now describe how we apply this process in

the case of the rank-rank gradient and with curvature constraints.

Rank-rank gradient. In the case of the rank-rank gradient, we let γ represent the slope

of the linear approximation to the CEF. That is, fixing a CEF Y (x), define

(γ,b):=argmin
γ′,b′∈R

∫ 100

0

(Y (x)−γ′x+b′)2dx.
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Curvature constraints. In the case of reporting the CEF with curvature constraints,

we simply define px(Y ) to be the value of the CEF at a given x. We define S to be the

set of CEFs that are consistent with monotonicity and a second derivative that lies below

a given magnitude in absolute value. In the case where there are no CEFs that precisely

match the bin means (e.g., for a small enough curvature constraint), we solve a modified

problem described formally in Novosad et al. (2020). Define T
(
{rk}Kk=1

)
to be the set of

CEFs that (a) minimize some distance metric between the bin means and the CEF, and

(b) are consistent with the observed bin means and extra assumptions (monotonicity and

curvature). In particular, for distance metric ‖·‖, define

M(Y ):=

∫ 100

0

‖Y (x)−rk(x)‖dx,

where rk(x):=rk if x∈ [xk,xk+1]. M(Y ) is the weighted distance between a given CEF Y

and the bin means {rk}. Then define

T
(
{rk}Kk=1

)
=P

⋂ {
Y (x)

∣∣∣ (∫ 100

0

‖Y (x)−rk(x)‖dx
)
≤M(P)

}
, (1.4)

for

M(P):=min
Y∈P

M(Y )

and

P :=
{
Y (x)| Y (x) is weakly increasing and has second derivative less than C

}
.

Put otherwise, we find the minimum distance between the CEFs and observed bin means,

as long as these CEFs obey certain properties. Then, we find the set of CEFs that obey

these properties and satisfy this minimum distance. If there are CEFs that precisely meet

the bin means, then T=S.

Finally, we report:

pmin
x = min

Y∈T({rk}Kk=1)
p̃x(Y ) (1.5)

pmax
x = max

Y∈T({rk}Kk=1)
p̃x(Y ). (1.6)

In practice, we choose the mean-squared error as the distance metric.
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