Intergenerational Mobility in India: New Methods and Estimates Across Time, Space, and Communities∗

Sam Asher†

Paul Novosad‡

Charlie Rafkin§

February 2021

Abstract

We study intergenerational mobility in India over time, across groups, and across space. We show that the modern set of rank-based mobility measures can be at best partially identified with education data. We develop a new measure of upward mobility that works well under data constraints common in developing countries. We find that intergenerational mobility in India has been constant and low since before liberalization. Among boys, rising mobility for Scheduled Castes is almost exactly offset by declining mobility among Muslims, a comparably sized group with few constitutional protections. Mobility among girls is lower, with less cross-group variation over time. Mobility is highest in places that are southern, urban, and have high average education levels. A natural experiment suggests that affirmative action for Scheduled Castes has substantially improved their mobility. Our measures are relevant for the study of mobility in poorer countries and in historical contexts.

∗We are thankful for useful discussions with Alberto Abadie, David Autor, Emily Blanchard, Raj Chetty, Eric Edmonds, Shahe Emran, Francisco Ferreira, Amy Finkelstein, Nate Hilger, Larry Katz, David Laibson, Ethan Ligon, Erzo Luttmer, Whitney Newey, Elias Papaioannou, Nina Pavcnik, Bruce Sacerdote, Frank Schilbach, Na’ama Shenav, Forhad Shilpi, Andrei Shleifer, Gary Solon, Bob Staiger, Doug Staiger, Chris Synder and Elie Tamer, among others. Annaka Balch, Ali Campion, Toby Lunt, Ryu Matsura, and Taewan Roh provided excellent research assistance. This project received financial support from the IZA GLM-LIC program. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. This paper contains some material previously contained in the retired paper, “Getting Signal from Interval Data: Theory and Applications to Mortality and Intergenerational Mobility.”

†Johns Hopkins University, sasher2@jhu.edu

‡Dartmouth College, paul.novosad@dartmouth.edu, corresponding author

§MIT, crafkin@mit.edu
1 Introduction

There are two widely held narratives regarding access to opportunity in India. On the one hand, economic liberalization, rapid economic growth, and urbanization have vastly expanded the set of opportunities available to Indians, leading to the emergence of a large middle class. The political sphere has also opened, with the emergence of a wide range of parties organized around caste, region, and ideology. Decades of affirmative action programs have targeted government benefits at historically disadvantaged groups. On the other hand, some of India’s entrenched inequalities seem as persistent as ever. Marriage across religious, caste, and class lines is exceedingly rare. Elites in business, government and civil society are still largely from upper classes and castes. Inequality has risen, and religious cleavages may be deepening (Chancel and Piketty, 2019). In this paper, we shed light on changing access to opportunity in India by studying the intergenerational transmission of economic status (Solon, 1999; Black and Devereux, 2011; Chetty et al., 2014a; Chetty et al., 2020), with a particular emphasis on the 478 million people (39%) who belong to India’s major disadvantaged groups (Muslims, Scheduled Castes, and Scheduled Tribes).

We focus on measuring the persistence of socioeconomic rank across generations, isolating intergenerational mobility from changes in inequality and growth, in the spirit of Solon (1999). We develop a set of methods that makes it possible to apply modern rank-based measurements of upward mobility in contexts where coarse educational outcomes are the only viable measure of socioeconomic status that can be linked across generations. These methods may be useful in studies of intergenerational mobility in other developing countries, as well as in historical contexts in richer countries.

Because of data quality and availability, as well as the challenge of measuring individual income in households with joint production, studies of intergenerational mobility in developing countries (and in historical contexts) often use education as a proxy for social status. Moreover, canonical intergenerational mobility models like Loury (1981), Becker and Tomes (1986), and Galor and Zeira (1993) often emphasize the role of human capital investment. A key challenge with educational mobility is that education data are often coarsely measured; for instance, for the 1960–69 birth cohort in India, over 50% of fathers and 80% of mothers

---

1Linked parent-child education data are also much more widely available than linked income data. Recent studies of intergenerational mobility focusing on education include Black et al. (2005), Güell et al. (2013), Wantchekon et al. (2015), Card et al. (2018), Derenoncourt (2019), and Alesina et al. (2021). More are summarized in Black and Devereux (2011).
report a bottom-coded level of education. This makes it difficult to use rank-based measures of mobility, such as absolute mobility, which require observing parents at specific percentiles in the socioeconomic status distribution.\(^2\) Studies of educational mobility have instead focused on estimators like the correlation coefficient between parents’ and children’s educational outcomes. These linear estimators have several limitations (discussed in Section 3.1), the most important of which is that they are not meaningful for subgroup analysis, because they measure individuals’ progress only against other members of their own group (Hertz, 2005).\(^3\)

In this paper, we show that with education data, the new generation of rank-based estimators of intergenerational mobility can at best be partially identified. Intuitively, when income mobility estimators are applied directly to educational mobility, they do not account for the loss of information associated with coarse measurement of ranks; they instead rely on implicit and untested assumptions about the latent rank distribution.\(^4\) We treat the estimation of child outcomes conditional on latent parent ranks as an interval data problem; for each mobility measure, we calculate the set of values that are consistent with a latent conditional expectation function (CEF) that generates the coarsely observed moments.\(^5\)

We introduce a new measure of upward mobility, bottom half mobility, which is the expected rank of a child born to a parent in the bottom half of the education distribution. Bottom half mobility has a similar interpretation to other measures of upward mobility, but it can be bounded tightly even in contexts with extreme interval censoring.\(^6\) In contrast, once prior

\(^2\)Chetty et al. (2014a) define absolute mobility at percentile \(i\) as the expected income rank of a child, conditional on that child being born to a parent at the \(i\)th income percentile.

\(^3\)For example, the parent-child rank-rank gradient among U.S. Blacks is nearly identical to that among U.S. Whites, even though Black children obtain considerably worse outcomes in expectation than White children at every percentile of the parent income distribution (Chetty et al., 2020).

\(^4\)The notion of a latent distribution of education ranks arises directly out of the standard human capital model (Card, 1999); individuals who are close to the margin of obtaining the next discrete level of education are those with high latent ranks in each bin. Note that because we use education as a proxy for socioeconomic status, the latent education rank is the parameter of interest rather than the precise number of years of education obtained. We discuss this concept further in Section 3.3.

\(^5\)We use a standard approach to interval data established by Manski and Tamer (2002) and extended to the problem of estimating outcomes conditioning on coarse education ranks in Novosad et al. (2020). We generate this set by using best- and worst-case assumptions about the underlying data generating process that are consistent with the data we do observe.

\(^6\)Bottom half mobility describes the expected outcome of children conditional on having a parent in the bottom half of the distribution. Absolute upward mobility Chetty et al. (2014a) conditions on the median parent in the bottom half of the distribution. If the conditional expectation function is linear in parent rank, the two measures are identical. If the CEF is concave, then bottom half mobility puts more weight on the outcomes of the least privileged children. Note that the linear parent-child income rank CEF in the United States is an exception rather the rule; in most countries, these CEFs are non-linear (Bratsberg et al., 2007; Boserup et al., 2014; Bratberg et al., 2015; Connolly et al., 2019).
measures (absolute upward mobility and the rank-rank gradient) are adjusted to account for the underlying uncertainty associated with interval data, their bounds become too wide to be meaningful. This paper thus relaxes the hidden assumptions underlying most mobility estimators in settings with education data and still obtains precise (if partially-identified) mobility estimates. To our knowledge, bottom half mobility is the first measure of inter-generational educational mobility that can be meaningfully compared across time and space, across countries, and across population subgroups.\textsuperscript{7,8}

We apply our measure to India, using data from the 2012 India Human Development Survey (IHDS) and the 2012 Socioeconomic and Caste Census (SECC).\textsuperscript{9} We document trends in educational mobility from the 1950–59 to the 1985–89 birth cohorts.\textsuperscript{10} We focus on measuring mobility from fathers to sons and daughters; mobility from mothers to children cannot be bounded tightly because the bottom-coding of mothers’ education is so severe.

We present three main findings. First, upward mobility has remained constant for the past several decades, despite dramatic gains in average levels of education and income. An Indian son born in the bottom half of the parent education distribution in 1985–89 (our youngest cohort) can expect to obtain the percentile 37.7; a daughter obtains percentile 35.6.\textsuperscript{11} A similar child in the U.S., which has low intergenerational mobility by OECD standards, on average attains education percentile 41.7.\textsuperscript{12,13} This suggests that India’s decades of economic growth have lifted the economic status of individuals in the bottom half of the socioeconomic distribution 7

\textsuperscript{7}Hertz (2008) provides a decomposition of intergenerational mobility that permits comparisons across subgroups. Like work before Chetty et al. (2014), this is a linear estimator that is difficult to use with interval-censored data.

\textsuperscript{8}Our approach can also be used to calculate other measures based on the CEF, such as the expected outcome a child born in the bottom 40%, or the median outcome of a child born in the bottom half; our results focus on bottom half mobility because it is a very close analog to the widely used measure of absolute upward mobility.

\textsuperscript{9}The former is a sample survey, and the latter is a socioeconomic census with high geographic resolution covering all individuals in the country.

\textsuperscript{10}Our main estimates are not subject to concerns about coresidence bias, because they link children to parents even when children are not in the same household. Our geographically precise estimates are restricted to coresident father/son pairs due to data limitations; we restrict this sample to sons aged 20–23 and show that the sample selection bias for this group is likely to be very small.

\textsuperscript{11}Following convention (Chetty et al., 2014b; Chetty et al., 2020), we always rank children in the own-gender distribution.

\textsuperscript{12}In a society where children’s outcomes are independent of parents (i.e. perfect mobility), a child born in the bottom half of the distribution obtains the 50th percentile on average. In a society with no upward mobility, (i.e. where all children obtain the same percentile as their parents) the same child attains the 25th percentile.

\textsuperscript{13}All of our mobility estimates are robust to different data construction methods, and we show that survivorship bias, migration, or bias in estimates from coresident parent-child households do not substantially affect our results. We also show that unobserved changes in the latent rank distribution of population subgroups within education bins cannot drive the secular changes that we document.
without substantially changing their likelihood of moving to a higher socioeconomic rank.\textsuperscript{14}

Second, we show that there are significant changes in the cross-group distribution of upward mobility over time, particularly among sons. We divide the population into Scheduled Castes (SCs), Scheduled Tribes (STs), Muslims, and Forwards/Others.\textsuperscript{15} Consistent with prior work (Hnatkovska et al., 2012; Emran and Shilpi, 2015), we find that sons from India’s constitutionally protected marginalized groups, the Scheduled Castes and Tribes, have closed respectively 50% and 30% of the mobility gap with Forwards/Others. In contrast, upward mobility for Muslim sons has steadily declined from the 1960s to the present. The expected educational rank of a Muslim boy born in the bottom half of the parent distribution has fallen from between percentiles 31 and 34 to a dismal 29. Muslim sons have considerably worse upward mobility today than both Scheduled Castes (38) and Scheduled Tribes (33), a striking finding given that, compared to Muslims, STs tend to live in much more remote and low-mobility areas. The comparable figure for U.S. Black men is 35.\textsuperscript{16} Higher caste groups have experienced constant and high upward mobility over time, a result that contradicts a popular notion that it is increasingly difficult for higher-caste Hindus to get ahead.

Our measures for father-daughter mobility are less precise, but the subgroup patterns appear to be different. Daughters from poor Muslim, SC, and ST households all have persistently lower mobility than Forwards/Others, and there is minimal convergence over the sample period.

Third, we describe substantial variation in upward mobility across 5,600 rural subdistricts and 2,000 cities and towns. Paralleling results from Chetty et al. (2014b), we find substantial heterogeneity even within small geographic regions. Upward mobility is highest in urban areas, and in places with high consumption, education, school supply, and manufacturing employment, which are broad correlates of development. High mobility is negatively correlated with caste segregation and land inequality. Geography-subgroup interactions are important;

\textsuperscript{14}A naive application of the canonical rank-rank gradient estimator would have suggested that mobility has improved significantly. This finding is driven entirely by the top 10 parent education percentiles, and is not robust to accounting for interval censoring in the education rank data.

\textsuperscript{15}We include non-Muslims in Other Backward Castes (OBC) in the “Others” category. Measuring OBC mobility is challenging because OBC definitions are less stable over time, are sometimes inconsistently classified between federal and state lists, and may be reported inconsistently by the same individual over time. These concerns apply to SC and ST groups, but at a considerably smaller scale. OBCs also did not gain affirmative action benefits analogous to those targeted at SCs and STs until 1992, after the births of our final cohorts. The very small number of Muslim SC/STs are categorized as Muslims; reclassifying them as SCs or STs, or excluding Sikhs, Jains and Christians from the “others” category do not affect our results.

\textsuperscript{16}This was calculated using the methodology in this paper and education data from Chetty et al. (2020). Bottom half \textit{income} mobility for U.S. Black men is 39 (Chetty et al., 2020).
for instance, daughters have higher mobility than sons in urban areas, but lower mobility in rural areas.

The final section of the paper examines several potential mechanisms for the divergence of Scheduled Castes from Muslims over the last 30 years. We show that this divergence cannot be explained by differential returns to education, occupational patterns, geography, or differential fertility. However, we find suggestive evidence that the basket of affirmative action policies targeted to India’s scheduled groups (but not to Muslims) may have had a substantial impact on their mobility. Following Cassan (2019), we study a natural experiment that added many castes to the Scheduled Caste lists in 1977. We show that when a caste group gets assigned to Scheduled Caste status, it experiences on average a 7–8 rank point increase in upward mobility over the next twenty years. This is the same size as the rank mobility gap that has opened between Muslims and Scheduled Castes over the same period. Our findings are thus consistent with the claim that educational quotas, government job reservations, and other affirmative action policies may drive the upward mobility gap that has opened between Scheduled Castes and Muslims. However, because we are limited to birth cohort × demographic group variation, these results are suggestive and not dispositive.

Contributions and literature review. Our paper’s contributions are both methodological and empirical. While bounding methods along the lines of Manski and Tamer (2002) and Novosad et al. (2020) are familiar in the econometrics literature, we are the first to apply these methods to the setting of educational mobility. We both identify and address methodological challenges that make it difficult to interpret research on educational mobility. In particular, we define a new parameter, bottom half mobility, which is the first educational mobility statistic that is valid for comparing population subgroups across different contexts. As a result, our tools have the potential to be useful in other settings, for instance in cross-country comparisons of educational mobility.

Prior researchers have used CEF-based mobility measures to examine subgroup outcomes, but the coarse measurement problem has forced them to use inconsistent measures over time and across contexts. For example, Card et al. (2018) and Derenoncourt (2019) define upward mobility in the 1920s as the 9th grade completion rate of children whose parents have 5–8 years of school (or approximately parent percentiles 45–70). Relatedly, Alesina et al. (2021) define upward mobility in Africa as the likelihood that a child born to a parent

\[17\] Card et al. (2018) then compare this measure with absolute upward mobility (i.e., children of parents at the 25th percentile) in the present.
who has not completed primary school manages to do so. While these measures capture
the ability of children to exceed the education levels of their parents, they do not distinguish
between average educational gains and changes in the ability of individuals to move up
the socioeconomic distribution in *relative* terms, the latter being central to the mobility
definitions of Solon (1999) and Chetty et al. (2014b). These measures thus combine upward
mobility and economic growth. The key advantages of our measure are that it isolates
upward mobility from both aggregate growth and changes in inequality, and it can be used
to compare groups from similar points in the parent rank distribution.

Empirically, we present several previously unknown facts about upward mobility in India.
Our findings imply that virtually all of the upward mobility gains in India over recent decades
have accrued to Scheduled Castes and Tribes, groups that have constitutional protections,
reservations in politics and education, and who have been targeted by many development
policies. There is no evidence that any of these gains have come at the expense of higher-caste
groups. On the other hand, mobility has declined for Muslims. We are not aware of studies of
intergenerational mobility for Indian Muslims, even though they number almost 200 million
people (higher than the number of people in Scheduled Castes).19

These empirical estimates contribute to a burgeoning literature on intergenerational
mobility, especially in the developing world. Black and Devereux (2011) provide a review
of cross-country estimates of intergenerational educational mobility, and recent work has
examined intergenerational mobility in the United States (Chetty et al., 2014a; Chetty et
al., 2020), western Europe (Bratberg et al., 2015), and Africa (Alesina et
al., 2021), among many other regions. The literature on India has: (i) emphasized absolute
outcomes (such as consumption), which are rising for all groups due to India’s substantial
economic growth (Maitra and Sharma, 2009; Hnatkovska et al., 2013); or (ii) compared
subgroups using the parent-child outcome correlation or regression coefficient, which describes
the outcomes of subgroup members relative to their own group, rather than to the national
population (Hnatkovska et al., 2013; Emran and Shilpi, 2015; Azam and Bhatt, 2015).20

---

18They also condition on substantially different parts of the education distribution in different times and
places. Card et al. (2018) measure \( E(y \geq 50 | x \in [45, 70]) \). Alesina et al. (2021) measure, for example, \( E(y > 52 | x \in [0, 76]) \) in Mozambique (where 76% of parents and 48% of children have not completed primary), but to
\( E(y \geq 18 | x \in [0, 42]) \) in South Africa, where \( y \) is child rank and \( x \) is parent rank. See Section 3.5 for more detail.

19Other economics papers on Indian Muslims include Khamis et al. (2012) and Bhalotra and Zamora (2010),
who note poor education outcomes among Muslims. The Sachar Committee Report (2006) and Basant et al.
(2010) summarize some recent research on Muslims in India, none of which addresses intergenerational mobility.

20Note that there is a parallel literature examining the persistence of income within an individual lifetime
Studies of affirmative action in India have found impacts on educational attainment of SC/STs (Frisancho Robles and Krishna, 2016; Bagde et al., 2016; Cassan, 2019; Khanna, 2020), but have not examined intergenerational mobility. Our findings suggest that the children of less educated SCs benefit from affirmative action, in contrast to the critique arguing that benefits from affirmative action in India accrue only to the already prosperous members of targeted groups.

More broadly, our paper relates to broader work on religion and economic development (McCleary and Barro, 2006; Becker and Woessmann, 2009). Alesina et al. (2020) and Platas (2018) find low mobility and educational outcomes for Muslims in Sub-Saharan Africa, where Islam plays a very different cultural, political and social role from India.\textsuperscript{21}

We have posted code online to calculate all of our mobility measures, along with bottom half mobility estimates with high geographic granularity.\textsuperscript{22}

Our paper proceeds as follows. Section 2 provides background on India’s social groups. Section 3 describes our methodological innovation in relation to prior measures of intergenerational educational mobility. Section 4 describes the data sources. Section 5 presents results on national and cross-group mobility trends, and the geographic distribution of intergenerational mobility. Section 6 presents our analysis of mechanisms. Section 7 concludes.

\section{Context on Intergenerational Mobility in India}

India’s rapid economic transformation and caste system make it a particularly important setting for understanding intergenerational mobility for at least two reasons. First, Indian society has undergone a large transformation over the last forty years. Economic liberalization, starting in the 1980s, dismantled many parts of India’s post-Independence socialist experiment. Decades of sustained economic growth have resulted in substantial reductions in poverty and the rise of a large middle class. This setting thus permits us to examine intergenerational mobility against the backdrop of rapid economic growth in a large developing nation.

Second, India’s caste system is characterized by a set of informal rules that inhibit intergenerational mobility by preventing individuals from taking up work outside of their caste’s traditional occupation and from marrying outside of their caste. While some have argued that economic growth is reducing the influence of old social and economic divisions

\textsuperscript{21}See also Kuran (2018) for a summary of the literature on Islam and economic performance.

\textsuperscript{22}https://github.com/devdatalab/paper-anr-mobility-india/
on economic opportunities, caste and religion remain important predictors of economic status (Munshi and Rosenzweig, 2006; Ito, 2009; Hnatkovska et al., 2013; Mohammed, 2019). Since independence in 1947, the government has systematically implemented policies intended to reduce the disadvantage of communities that are classified as Scheduled Castes or Scheduled Tribes. These groups are targeted by a range of government programs and benefit from reservations in educational and political institutions.

India’s Muslims constitute a similar population share as the Scheduled Castes and Scheduled Tribes (14% for Muslims vs. 17% for SCs and 14% for STs). While Muslim disadvantage has been widely noted, including by the well-known federal Sachar Report (2006), there are few policies in place to protect them and there has not been an effective political mobilization in their interest. On the contrary, a large-scale social movement (the Rashtriya Swayamsevak Sangh, or RSS) and several major political parties have rallied around pro-Hindu platforms and policies which arguably discriminate against Muslim religious, economic, and cultural practices. Violent anti-Muslim riots have been closely tied to political parties and political movements (Wilkinson, 2006; Berenschot, 2012; Blakeslee, 2018).

Understanding how mobility has changed for these population groups is important even if all social groups are becoming better off. As noted by Chetty et al. (2020), intergenerational mobility governs the steady-state distribution of outcomes across social groups. Characterizing intergenerational mobility for India’s disadvantaged minority groups therefore has important consequences for equity.

3 Methods: Measuring Mobility in Developing Countries

3.1 Background: Measurement of Intergenerational Mobility

We define intergenerational mobility as the persistence of socioeconomic rank across generations, following Solon (1999), Chetty et al. (2014b) and Chetty et al. (2020), all of whom emphasize isolating the rank persistence from changes in economic growth and inequality.\textsuperscript{23}

Desirable properties of mobility estimators. We aim to develop a mobility estimator with three desirable properties.\textsuperscript{24} First, the estimator should distinguish mobility from economic growth and inequality. The canonical mobility estimator, the coefficient from a regression of child income on parent income, does not do so, as it is affected by changes in

\textsuperscript{23}For review papers on intergenerational mobility, see Corak (2013), Black and Devereux (2011), and Roemer (2016).

\textsuperscript{24}This is not meant to be an exhaustive list; rather, we highlight several properties that many mobility measures do not have, and which our new measure does.
both rank mobility and in inequality (Chetty et al., 2014b). Nor does the probability that a child obtains a higher socioeconomic outcome than their parent (Chetty et al., 2017; Alesina et al., 2021), which simultaneously measures intergenerational mobility and economic growth. Inequality and growth in India have been widely studied; we focus on the persistence of socioeconomic rank as distinct from these other phenomena.

Second, we seek a measure that is valid for subgroup analysis. The most widely used mobility estimators, the parent-child outcome elasticity or the rank-rank gradient (Solon, 1999; Hertz et al., 2008; Black and Devereux, 2011), are not well-suited for between-group comparisons. The parent-child outcome gradient in a population subgroup compares children’s outcomes against more advantaged members of their own group. A subgroup can therefore have a lower gradient (suggesting higher mobility) and yet worse outcomes at every point in the parent distribution.\footnote{For a striking example, see Chetty et al. (2020), who show that Black sons suffer the same large rank disadvantage at every point in the parent rank distribution, giving them a nearly identical rank-rank gradient to White sons.} Third, we seek a measure that is comparable across different times and contexts.

In the context of intergenerational income mobility, \textit{absolute upward mobility} (Chetty et al., 2014a) meets all three of these criteria. It is defined as the expectation of a child’s income rank, conditional on having a parent at the 25th income percentile, or $p_{25} = E(y|x = 25)$, where $y$ is the child rank and $x$ is the parent rank. This measure describes the expected rank of a child born to the median parent in the bottom half of the parent rank distribution.

The disadvantage of this measure is that it is difficult to use when education is the best available measure of socioeconomic status, such as in developing or historical contexts, as we explain in the next subsection. Our proposed measure, \textit{bottom half mobility}, is similar in interpretation to $p_{25}$, but works well in these contexts.

\subsection*{3.2 Educational Mobility and Income Mobility}

In the study of upward mobility in developing countries, education is often the preferred proxy of social status, for three reasons (Solon, 1999; Güell et al., 2013; Wantchekon et al., 2015; Card et al., 2018; Derenoncourt, 2019; Alesina et al., 2021). First, matched parent-child education data are more widely available than matched income data. Second, due to subsistence consumption and high intertemporal variance of income, permanent income is measured with substantial error in developing countries, biasing mobility estimates upward (Zimmerman, 1992). Third, individual permanent income is difficult to ascribe to individuals in multigenerational households with joint production, which are common among the rural poor.
However, studies of educational mobility to date have not developed measures that isolate mobility from growth and are valid across subgroups. We cannot directly estimate $p_{25}$ with education data, because coarse measurement of educational completion makes it impossible to identify a parent at a precise education percentile. We highlight this challenge in Figure 1A, which shows the average child education rank in each parent education rank bin, for two Indian birth cohorts: 1960–69 (circles) and 1985–89 (x’s). The solid and dashed vertical lines respectively show the boundaries for the bottom-coded education bin in the two cohorts. In the 1960–69 birth cohort, a full 57% of fathers report a bottom-coded education level; in the 1985–89 cohort, this figure is 36%. How does one identify the expected child rank given a parent at the 25th percentile in these birth cohorts?\footnote{The graph makes clear that $p_{25}$ must be different from the expected child rank in the parent bin containing the 25th percentile. When there is less censoring, the bottom bin represents a lower average set of parent ranks.}

Figure 1B shows two conditional expectation functions that are both perfectly consistent with the 1960–69 moments. The data available cannot distinguish between these two functions, but they have different implications for upward mobility: one function implies a much higher expected rank for a child born to parents at the bottom of the distribution than the other. The CEF of child rank given parent rank can thus be at best partially identified from education data.

Coarse measures of parental status like these are widespread in the mobility literature. In developing countries, bottom-coding rates in excess of 50% are widespread (Narayan and Van der Weide, 2018); the same is true for older generations in richer countries. Internationally comparable censuses often report education in as few as four categories.\footnote{Income mobility is also often based on censored estimates; in the well-known British Cohort Study, one income bin contains more than 30% of the data. Appendix Table A1 reports the number of parent education bins used in a set of recent studies of intergenerational mobility from several rich and poor countries, highlighting the ubiquity of course parent rank bins.} Transforming transition matrices based on education data (with arbitrary coarse rank boundaries) into quantile transition matrices faces the same barriers as point-estimating the CEF above.

### 3.3 Estimating Bounds on a CEF with Censored Education Data

We aim to construct a measure of intergenerational mobility that satisfies the desirable properties above and can be tightly estimated with education data. To address the non-observability of granular parent education ranks, we use a partial identification framework.

---

\footnote{The graph makes clear that $p_{25}$ must be different from the expected child rank in the parent bin containing the 25th percentile. When there is less censoring, the bottom bin represents a lower average set of parent ranks.}

\footnote{Income mobility is also often based on censored estimates; in the well-known British Cohort Study, one income bin contains more than 30% of the data. Appendix Table A1 reports the number of parent education bins used in a set of recent studies of intergenerational mobility from several rich and poor countries, highlighting the ubiquity of course parent rank bins.}
suggested in the example above and derived in Novosad et al. (2020), which we describe here.\footnote{Novosad et al. (2020) take the interval data framework of Manski and Tamer (2002) and extend it to identify $E(y|x=i)$, where $y$ is adult mortality and $x$ is adult education rank. The methodological contribution of the present paper is to frame the challenges in the educational mobility setting as an interval data problem, and to use these partial identification tools to derive a measure with desirable properties.}

Formally, we first aim to measure $p_{i} = E(y|x = i)$, where $y$ is a child outcome and $x$ is a parent education rank. We observe only that $x$ lies within some interval $[x_{k},x_{k+1}]$, where $k$ indexes rank bins. The mean value of $E(y|x)$ in bin $k$ is observed.\footnote{For parsimony, our framework considers a setting in which only the parent rank is interval-censored — i.e., we take the child rank variable as not censored. We address extensions with censored child ranks and potential bias from our approach in Section 5.4.2.}

We require only two substantive assumptions to derive bounds on $E(y|x)$. First, we assume that there is a latent continuous parent education rank; this implies a meaningful but unobserved ranking of parent educations within each observed education category. Formally:

$$E(y|x = i) \text{ has support for all values of } i \in [0,100].$$

(Assumption 1)

This assumption arises directly from a standard human capital model where differences in education levels reflect individual differences in costs and benefits of seeking education (Card, 1999). The latent education rank $x$ reflects the education level that would be chosen from a \textit{continuous} rather than a discrete set of education choices. The latent rank reflects how much the marginal benefit or cost of obtaining the next level of education (e.g., “Middle School”) would need to change in order for a given individual to progress to the next level. Individuals who would need only a small benefit shift to choose the next education level have the highest educational ranks within their rank bin. The latent rank thus reflects the underlying factors that shift individuals’ demand for education, which can be expected to be correlated with socioeconomic status (Card, 1999).\footnote{Like other papers on intergenerational educational mobility, we use education strictly as a \textit{proxy} for socioeconomic status. Our interpretation is meaningful even if individuals at different latent ranks within the same bin have obtained \textit{exactly} the same number of years of education. All things equal, individuals with higher latent ranks are understood in expectation to have socioeconomic advantages in dimensions other than years of education.}\footnote{While the transformation of income to income rank is common, the same transformation in education has been rare, perhaps because of the coarse data problem that we identify in this paper (Rosenbaum et al., 2000).}

Assumption 1 lets us treat the estimation of $E(y|x = i)$ as an interval censoring problem (Manski and Tamer, 2002; Novosad et al., 2020).

We next assume that the expectation of the child rank is weakly increasing in the latent
parent rank: having a more advantaged parent cannot make a child worse off. Formally:

\[ E(y|x) \text{ must be weakly increasing in } x. \quad \text{(Assumption 2)} \]

Empirically, average socioeconomic outcomes of children are strongly monotonic in parent socioeconomic outcomes across many socioeconomic measures and countries (Dardanoni et al., 2012), as well as in every birth cohort and almost every subgroup-cohort that we study in India (see Appendix Table A2).\(^{(32,33)}\) Note that the conventional linear estimation of educational mobility also implicitly imposes monotonicity.

Given Assumptions 1 and 2, we can obtain sharp bounds on the child CEF. The analytical formulation of the bounds is derived in Novosad et al. (2020) (for the context of estimating individual mortality by education rank) and presented in the Online Appendix for the context of upward mobility. Figure 1C shows the bounds on the Indian CEF for the 1960–69 and the 1985–89 birth cohorts. While the bounds are tight in parts of the CEF where the education bins are small, they are very wide in the bottom half of the distribution where the data is heavily interval-censored. Absolute upward mobility (the value of the CEF at \(x = 25\)) has bounds that are far too wide to be meaningful for either the 1960–69 or the 1985–89 cohort.

Although not used in this paper, our framework permits tighter bounds to be obtained by imposing additional structural assumptions on the CEF. In the Online Appendix, we explore a constraint on the curvature of the CEF, the limit case of which is a linear estimation equivalent to calculating the rank-rank gradient. Our approach thus generalizes the canonical mobility estimator, which in many empirical cases is a poor fit to the data due to the linearity assumption.

**Bottom half mobility.** We propose a measure, **bottom half mobility**, which describes the expected outcome of a child born to parents in the bottom half of the parent distribution, or \(\mu_{50}^{50} = E(y|x \in [0,50])\). Note the similarity in interpretation to absolute upward mobility, which is the expected outcome of a child born to the **median** parent in the bottom half of the

\(^{(32)}\)In theory, a means-tested welfare program with a sharp discontinuation of benefits at a rank boundary could result in a non-monotonic CEF. Such a precise welfare program is unlikely to exist in any country, much less a developing country with imprecise measurement of income.

\(^{(33)}\)In small samples, empirical non-monotonicity may emerge from monotonic distributions due to sampling error. This occurs at the very top of the distribution in a minority of subgroup-cohorts in our data; these non-monotonocities do not affect our calculations of upward mobility, which only use information from bins adjacent to the bottom half of the parent distribution (see below).
parent distribution, \( p_{25} = E(y|x=25) \).\(^{34,35}\) \( p_{25} \) and \( \mu_{50}^{50} \) both describe the rate of convergence of groups in the bottom half of the socioeconomic distribution, where 50 implies convergence to the mean rank in one generation, and a value of 25 implies no convergence at all. Both measures are useful, just as the mean and median of a given distribution have advantages and disadvantages as summary statistics. The most important advantage of \( \mu_{50}^{50} \) is that, as we show below, it can be tightly bounded in contexts where \( p_{25} \) cannot.\(^{36}\)

### 3.4 Comparing Bounds on Different Functions of the CEF

Panels A through C of Figure 2 respectively show bounds on the rank-rank gradient (\( \beta \)), absolute upward mobility (\( p_{25} \)), and bottom half mobility (\( \mu_{50}^{50} \)) for the 1960–69 and the 1985–89 birth cohorts in India. As benchmarks, we show similar measures for USA and Denmark.\(^{37}\) The bounds on the conventional measures \( \beta \) and \( p_{25} \) are not informative either in levels or in changes. In contrast, our proposed measure \( \mu_{50}^{50} \) is bounded tightly in the 1960s and nearly point-estimated in the 1980s.

Figure 2 shows the key advantage of bottom half mobility: it can be tightly bounded even with severely interval-censored rank data. For intuition behind the tight bounds on \( \mu_{50}^{50} \), note that \( \mu_{a}^{b} \) is point-identified when \( a \) and \( b \) correspond to bin boundaries in the data—it is just the mean child outcome given parents in those bins. In general, \( \mu_{a}^{b} \) is tightly bounded when \( a \) and \( b \) are close to bin boundaries in the data, by virtue of the continuity of the CEF and uniformity of the rank distribution. In contrast, absolute mobility (\( E(y|x=i) \)) is not point-identified for any value of \( i \). Figure 3 shows graphically how the relatively tight bounds on \( \mu_{50}^{50} \) are obtained.

The wide uncertainty in our measures of \( \beta \) and \( p_{25} \) reflect a strength of our approach relative to prior work. When rank data are highly censored, we should indeed have less certainty over the ability of individuals to move up from the bottom of the rank distribution. By delivering precise point estimates regardless of the coarseness of the data, conventional

\(^{34}\)If the CEF is linear, \( p_{25} = \mu_{50}^{50} \); if the CEF is concave at the bottom of the parent distribution, then \( \mu_{50}^{50} < p_{25} \). Most CEFs in the literature are concave, so \( \mu_{50}^{50} \) effectively puts more weight on outcomes at the very bottom of the parent distribution than \( p_{25} \).

\(^{35}\)Our framework can bound many other measures, such as \( \mu_{20}^{20} \) (the expected rank of a child born in the bottom 20%), \( E(y > 80|x < 20) \) (the probability that a child born in the bottom 20% makes it into the top 20%), or the conditional median function of child rank given parent rank.

\(^{36}\)The Online Appendix provides a formal statement of analytical bounds on \( \mu_{a}^{b} \) (derived in Novosad et al. (2020) for the case of mortality estimation), and on arbitrary functions of the CEF, including the best linear approximator to the CEF (i.e. the rank-rank gradient).

\(^{37}\)The rank-rank gradient is benchmarked against educational mobility estimates from Hertz et al. (2008). For \( p_{25} \) and \( \mu_{50}^{50} \), we use income mobility estimates from Chetty et al. (2014a).
methods use hidden assumptions (such as CEF linearity) and convey excess precision.

The rank-rank gradient, absolute mobility, and bottom half mobility are all scalar statistics that capture different characteristics of the intergenerational persistence of rank, and they may all be of independent policy interest. However, only bottom half mobility can be measured informatively given the type of education data typically available in developing countries. This makes bottom half mobility the first measure of intergenerational educational mobility that can be compared meaningfully across population subgroups, across countries, and across time.

3.5 Comparison with Other Measures of Educational Mobility

Card et al. (2018) and Derenoncourt (2019) use education data to compare geographic patterns in upward mobility between the 1920s and the 1980s. Both papers define upward mobility in the 1920s birth cohort as the 9th grade completion rate of children whose parents have 5–8 years of school, described by Card et al. (2018) as “roughly in the middle of the parental education distribution.” They then compare this measure with \( p_{25} \) for a birth cohort in the 1980s. Translating this into our framework, where \( x \) is a parent rank and \( y \) is a child outcome, these papers are comparing \( E(y \geq 50 | x \in [45,70]) \) for the 1920s birth cohort to \( E(y | x = 25) \) in the present. The 1920s measure has the advantage of being calculated directly as a bin mean, but it jointly measures rank persistence and overall education growth, while \( p_{25} \) in the 1980s isolates rank persistence. Our approach makes it possible to isolate rank persistence in both periods by measuring \( \mu_{50} = E(y | x \in [0,50]) \) in both periods, regardless of the bin boundaries available in the data.

Alesina et al. (2021), who study intergenerational mobility across Africa, face the same problem of variable rank bin boundaries across countries and time. They focus on education levels, defining upward mobility as the probability that a child born to a parent who has not completed primary school manages to do so. Like the measure in Card et al. (2018), this measure combines aggregate education growth with socioeconomic rank persistence. It also conditions on different groups in different times and countries; in rank terms, this measure approximately describes \( E(y > 52 | x \in [0,76]) \) in Mozambique (where 76% of parents and 48% of children have not completed primary school) and \( E(y > 18 | x \in [0,42]) \) in South Africa. Our approach makes it possible to estimate \( E(y | x \in [0,50]) \) in all settings, isolating the rank persistence interpretation of intergenerational mobility, as in Solon (1999) and Chetty et al. (2014b).

Finally, when constructing transition matrices from interval data, researchers have ran-
domly reassigned individuals across bins to create quantile bins. While this approach may seem innocuous, in fact it implicitly assumes that the CEF is a step function with zero slope between bin boundaries. This can result in biased estimates that are misleadingly precise. For example, Narayan and Van der Weide (2018) find virtually identical outcomes for children growing up in the bottom three quartiles of the parent distribution in Ethiopia — a mechanical artifact of over 80% of parents reporting the bottom-coded education level.

4 Data

We draw on two datasets that report matched parent-child educational attainment. Our main results rely on the India Human Development Survey (IHDS), a nationally representative survey of 41,554 households, with rounds in 2004–05 and 2011–12. The IHDS identifies religion and Scheduled Tribe or Scheduled Caste status. We classify SC/ST Muslims, who make up less than 2% of SC/STs, as Muslims.\(^{38}\) About half of Muslims are Other Backward Castes (OBCs); we classify these as Muslims.\(^{39}\)

Crucially, the IHDS records the education of parents for the majority of respondents, even if those parents have died or are not resident in the household. Estimates using the IHDS data are thus not subject to concerns about coresidence bias. Parent-child coresidence rates decline rapidly with child age (Appendix Figure A1). Appendix Figure A2 shows the bias that arises from estimating upward mobility from coresident parent-child pairs. The bias rises substantially for sons over age 25 and daughters over the age of 18. When looking at older cohorts, it is thus essential to include children who no longer live with their parents as we do in the IHDS sample; earlier Indian mobility estimates based on coresident children as old as 40 should be treated with caution.

We estimate mobility in the past by studying children from older birth cohorts, also in the 2011–2012 IHDS. We address survivorship bias by showing that results are consistent with an analysis of the same birth cohorts using the 2004–05 IHDS, described in Section 5.1. We pool the data into 10-year birth cohorts for 1950–69, and 5-year birth cohorts for 1970–1989 where

\(^{38}\)Classifying this group as SC/ST or excluding this group does not affect any of the results because overall they represent less than 0.4% of the population.

\(^{39}\)We do not consider OBCs as a separate category in this paper because OBC status is inconsistently reported across surveys, due to both misreporting and changes in the OBC schedules. Analysis of mobility of OBCs will therefore require detailed analysis of subcaste-level descriptors and classifications which are beyond the scope of the current work. We pool Christians, Sikhs, Jains and Buddhists, who collectively make up less than 5% of the population, with higher-caste Hindus (i.e. forward castes and OBCs); we describe this group as “Forward/Other.” We find broadly similar results if we exclude these other religions from the sample.
we have more power. The data do not contain links for mothers or daughters for the 1950–59 birth cohort. The oldest cohort of children that we follow was born in the 1950s and would have finished high school before the beginning of the liberalization era in the 1980s. The cohorts born in the 1980s would have completed much of their schooling during the liberalization era. The youngest cohort in this study was born in 1989; cohorts born in the 1990s may not have completed their education at the time that they were surveyed and are therefore excluded.

The sample size of the IHDS is too small to study geographic variation in any detail. We therefore draw on the 2011–12 Socioeconomic and Caste Census (SECC), an administrative socioeconomic database covering all individuals in the country that was collected to determine eligibility for various government programs. The household roster describes age, gender, education, and Scheduled Caste or Scheduled Tribe status, but not religion. Assets and income are reported at the household level and thus cannot be used to estimate mobility.\textsuperscript{40}

We construct parent-child links in the SECC only when parents and children reside in the same household. To minimize coresidence bias, we limit the SECC analysis to sons aged 20–23, a set of children for whom schooling is largely complete, but parent coresidence rates are still high. We do not study daughters using the SECC, because many daughters have already left home at ages when other daughters are still completing their education. The SECC sample thus consists of 31 million young men and their fathers.\textsuperscript{41} We harmonize education definitions across SECC and IHDS, resulting in seven categories that are commonly used in Indian education data.\textsuperscript{42}

Given the strengths and limitations of each dataset, we use the SECC to study cross-sectional geographic variation in mobility, and the IHDS to study mobility differences across groups and across time. Details on construction of parent-child links, coding of education categories, and additional data sources and variables used in the geographic analysis can be found in Appendix C.

\textsuperscript{40}Additional details of the SECC and the scraping process are described in Asher and Novosad (2020) and in Appendix C.

\textsuperscript{41}For the coresident father-son pairs that are observed in both datasets, IHDS and SECC produce similar point estimates for upward mobility.

\textsuperscript{42}The categories are (i) illiterate with less than primary; (ii) literate with less than primary (iii) primary; (iv) middle; (v) secondary (vi) higher secondary; and (vii) post-secondary.
5 Results: Intergenerational Mobility in India

5.1 Changes in National Upward Mobility, 1950–59 to 1985–89

Figure 4 shows our main measure of upward mobility (bottom half mobility, or $\mu_{50}^{0} = E(y|x \in [0,50])$, where $y$ is the child education rank). Panel A shows the father-son relationship. Upward mobility has been largely static over time, moving from [36.6,39.0] for the 1960–69 birth cohort to [37.5,37.9] for the 1980–85 birth cohort. For comparison, this measure in the U.S., which has low intergenerational mobility by OECD standards, is 41.7. The bounds on the 1950–59 birth cohort estimates are wider, leaving open the possibility of some gains from the 1950s to the 1960s birth cohorts. Note that a naive application of the rank-rank gradient to these data would instead suggest substantial and precise improvements in mobility over the sample period; Figure 2 shows that the data do not support a precise estimate of this statistic once the interval censoring is taken into account.

Panel B of the same figure describes mobility from fathers to daughters. We cannot reject a broadly similar pattern to the father-son results, though the wider bounds leave open the possibility of mobility losses over this period. In the youngest birth cohort, father-daughter mobility is 35.6, about two rank points lower than father-son mobility. Daughters are thus less likely to escape low relative socioeconomic status than sons.

Obtaining informative mobility estimates for the mother-child relationships is more difficult, because mothers are much more likely to be in bottom-coded education categories. Under such severe censoring, we cannot estimate $\mu_{50}^{0}$ with any precision. Even in the most recent 1985–89 birth cohort, we estimate bottom half mobility to be [37.5,41.4] for sons and [33.8,39.1] for daughters. We thus focus on estimates of mobility based on fathers.

We can also calculate $\mu_{50}^{0}$ with child education levels as the $y$ variable. For example, the measures are very tightly bounded for the more recent birth cohorts, because there is a rank boundary close to 50 in the parent distribution. When the distance between upper and lower bounds is less than 0.3, we report the midpoint as a point estimate.

Source: our calculations using $\mu_{50}^{0}$, based on data from Chetty et al. (2020). There is not yet a wide set of internationally comparable estimates of rank-based educational mobility, in part because of the methodological challenges described and addressed in this paper.

Appendix Figure A3 shows that these results are unlikely to be affected by survivorship bias. We estimate upward mobility for the same birth cohorts using the IHDS 2004–05; if mobility estimates for older cohorts were affected by differential mortality of high mobility groups, we would find different estimates from the earlier data, but the bounds are highly similar and show the same lack of change over time.

Among mothers of the 1960s birth cohort, 82% had less than two years of education. For the 1985–89 birth cohort, this number was 65%.

Appendix Figure A4 shows the admittedly uninformative graph of this measure over time.
$E(\text{child years } \geq 12|x \in (0,50))$ describes the likelihood that a child attains high school or greater, conditional on having a parent in the bottom half. Panels C and D of Figure 4 show this measure for father-son and father-daughter links respectively. The graphs also show $E(\text{child years } \geq 12|x \in (50,100))$, the likelihood of high school attainment given a parent in the top half of the education distribution. These graphs show the secular increase in high school attainment over time for children from privileged and underprivileged backgrounds. Daughters from bottom half families have experienced the least gains, while daughters born in the top half of the distribution have almost closed the gap with well-off sons. For both sons and daughters, gains in high school attainment have accrued almost entirely to children from the top half of the distribution, a reflection of the stagnant overall upward rank mobility seen in panels A and B. However, these estimates confound intergenerational mobility with aggregate increase in education, which is why we focus on $\mu_{50}^{10}$ in rank terms.

To summarize, children born to less privileged families in post-liberalization India have very similar prospects for moving up in the rank distribution as they did in the pre-liberalization era. To be clear, living standards have improved for individuals across the rank distribution; it is the probability of making progress in rank terms which is unchanged. This result thus contradicts the narrative of India becoming a land of greater churn in terms of relative social status.

5.2 Changing Mobility Across Social Groups

We next examine how these levels and trends differ across groups. Figure 5 presents bottom and top half mobility for Muslims, Scheduled Castes, Scheduled Tribes, and all others. Panel A shows father-son pairs, revealing substantial trend differences across groups. As noted by other researchers, upward mobility for Scheduled Tribes, and especially for Scheduled Castes, has improved substantially (Hnatkovska et al., 2012; Emran and Shilpi, 2015). The expected rank for SC children born in the bottom half of the parent distribution has risen from [33, 35] in 1960–69 to 38 in 1985-89, closing half of the mobility gap with upper castes. Upward mobility for members of Scheduled Tribes rises from [29,31] to 33 over the same period.

In contrast, Muslim upward mobility declines substantially, falling from [31,34] to 29 in the same period. These changes not only constitute a major decline in mobility, but make Muslim men the least upwardly mobile group in modern India. Mobility for Muslim sons is lower even than for ST sons, who are often thought of as having benefited very little from Indian growth. The fact that a Muslim boy born to a family in the bottom half of the distribution can expect to obtain the 29th percentile implies that Muslims born into low status are very likely to
remain low status. Finally, the “Forward/Others” group, predominantly higher-caste Hindus, shows little change, with mobility shifting from [42,44] to 42. The flat trend in upward mobility for sons can therefore be decomposed into gains for SCs and STs and losses for Muslims.

Panel B shows downward mobility ($\mu_{100}$) for father-son links over the same period; this measure reflects the persistence of high status among each group. We see a small amount of convergence between the three marginalized groups and the Forward/Others group, chiefly from the 1970s to the 1980s birth cohort. But there is no sign of the dramatic divergence between SCs and Muslims that was found for upward mobility.\(^{48}\)

To interpret these results, note that one rank point is associated with about 0.15 years of education on average in 1985. The 9 rank point mobility difference between Muslim and SC boys thus corresponds to 1.4 years of education in 1985, when children of bottom-half parents on average attained 6.5 years of education.

Panels C and D of Figure 5 show the same results for father-daughter pairs. Among daughters, with the exception of recent minor gains for SCs from top half families, none of the marginalized groups have made substantial gains relative to Forwards/Others. There is also little sign of the divergence between SCs and Muslims that was observed among sons. Table 1 summarizes the changes over time for the full sample and all the population subgroups, along with bootstrap confidence sets to account for sampling variation, calculated following Chernozhukov et al. (2007).\(^{49}\) Table 2 shows confidence sets for mobility differences between groups for the youngest (1985–89) birth cohort.\(^{50}\)

Note that estimating $\mu_{100}$ for population subgroups implicitly assumes that the subgroup parent populations are uniformly distributed across the bottom half of the rank distribution. This assumption is unlikely to hold, but mobility changes will be biased only if the parent density functions change substantially in the same period. We verify robustness to alternate

\(^{48}\)Appendix Figure A5 shows analogous results to Figure 5, but with education levels (at least primary, and at least high school) as outcomes, rather than education ranks. The advantage of these graphs is that they present outcomes for children that are not subject to interval censoring; the parent variable remains interval censored. The results are consistent with the rank-based estimates, confirming that the separation between Scheduled Caste and Muslim sons is not driven by unobserved changes in interval-censored ranks for children from these groups.

\(^{49}\)Appendix Table A4 shows similar estimates with ranks calculated from the granular years of education in the IHDS; the mobility estimates and subgroup differences are nearly identical.

\(^{50}\)The confidence sets in Tables 1 and 2 are wider than mobility confidence intervals from prior studies because they reflect both statistical variation and uncertainty due to coarse measurement of education, the latter of which has not been addressed by prior studies. The cross-group differences in the youngest birth cohort are all highly significant, as is the trend difference between SCs and Muslims.
distributional assumptions in Subsection 5.4.1.

To summarize, we observe a sharp divergence between upward mobility for sons from Scheduled Caste and Muslim groups. Muslim sons from poor families have declining mobility and very little opportunity to improve their relative social status. This low mobility may also adversely affect female Muslims, since marriage is nearly universal in India and almost entirely within social group, and female labor force participation is very low. Understanding how marriage ties interact with the upward mobility of sons and daughters is of interest but beyond the scope of the present paper.

5.3 Upward Mobility Across Geographic Areas

We next describe the geographic variation in upward mobility. The limited sample size of the IHDS only allows us to examine geographic patterns of subgroup mobility at a low resolution. Appendix Figure A6 shows bottom half mobility, disaggregated by child gender, social group, and rural-urban status. Mobility is systematically higher in urban areas, but subgroup disadvantage varies substantially by geography. The urban-rural gap is much higher for daughters than for sons, such that urban daughters’ mobility is about five rank points higher than urban sons’. Muslims and SCs on average have higher mobility in cities (not shown), but their relative position in cities with respect to Forwards/Others is worse.

The remainder of this section uses the SECC, which has a large sample and precise location identifiers that make it possible to generate mobility estimates in very small geographic areas. As noted above, the SECC sample is limited to 20–23-year-old coresident sons, and does not include data on religion. We do not explore time series patterns across geography, both because we do not observe where children grew up and because we do not observe the parents of children from earlier birth cohorts.

Figure 6A presents a heat map of upward mobility across 4000 subdistricts and 2000 major towns across all of India.\textsuperscript{51} The geographic variation is substantial. The interquartile range of upward mobility is $[31.8,42.8]$ across cities/towns and $[30.3,45.1]$ across rural subdistricts; for comparison, the IQR of $p_{25}$ across commuting zones in the U.S. is slightly smaller: $[39.9,47.1]$ (Chetty et al., 2014a). Upward mobility is consistently highest in southern India—Tamil Nadu and Kerala—and is also noticeably high in the mountainous states of the North. Parts

\textsuperscript{51}There are 8000 towns in the 2011 Population Census, on which the SECC is based. While our coverage of rural areas is almost complete, the data posted online described only 2000 of the towns. The town sample is broadly representative of the urban population in demographics and income. The graph shows the midpoint of the bounds; in 99% of cases, the bound width is less than two rank points.
of the Hindi-speaking belt—especially the state of Bihar—and the Northeast are the lowest mobility regions of India. Gujarat is noteworthy as a state with high economic growth but relatively low mobility.

In broad regions of high mobility, there are low mobility islands, such as the rugged region between Andhra Pradesh and Karnataka. Cities and towns for the most part stand out as islands of higher mobility. However, there is not a single subdistrict or town in Bihar with higher average mobility than the southern states.

Figure 6B shows a ward-level mobility map of Delhi, showing substantial variation in neighborhood-level mobility. The 90th percentile ward has 52% higher upward mobility than the 10th percentile ward (47.9 vs. 31.4). Children in the dense and industrial areas of Northeast Delhi have the least opportunity and children from similarly-ranked families in Southwest Delhi have the most.

To explore some of the potential drivers of geographic variation in upward mobility, Figure 7 presents the association between bottom half mobility and several correlates identified by the earlier literature on India and other countries. Panel A presents coefficients from a set of bivariate regressions of bottom half mobility on characteristics of rural subdistricts across India, with X variables normalized to mean zero and standard deviation one. Panel B presents analogous results for the town sample.

At the rural level, the traditional markers of economic development — consumption, and average levels of education — are the strongest correlates of upward mobility. Local public goods and manufacturing employment are also positively correlated with upward mobility. Availability of primary schools is the least important of these, but availability of high schools is highly correlated with mobility, perhaps because primary education is now close to universal. Surprisingly, the share of SCs is positively correlated with upward mobility even though SCs have lower mobility on average. Segregation and land inequality are negatively correlated with upward mobility, a parallel result to that found in the United States (Chetty et al., 2014a).

In urban places, we find that upward mobility is higher in towns that have (i) higher population; (ii) more SCs; (iii) more educated populations; and (iv) more high schools per capita. As in rural areas, SC/ST segregation is negatively associated with mobility.

Place of residence is thus a strong predictor of upward mobility. These local mobility estimates have two limitations. First, they are based on the educational outcomes of children.

\[^{52}\text{All variables in these figures are defined in Appendix C.}\]
who finished their education by 2010, and thus reflect the circumstances that drove education choices in the period 2000–2010, which may be different from the present. Second, the estimates do not account for migration, as we do not observe respondents’ location of birth. Low mobility in Northeast Delhi could in part be due to selection of immigrants from poor parts of rural North India. The more local the mobility estimate, the greater is the potential bias from migration. Ideally, we would have local surveys that record both location of origin and parental education; to our knowledge, there are no such surveys with high geographic precision. The rural (subdistrict-level) estimates are less likely to be biased by migration, because permanent migration in rural areas in India is extremely low.\footnote{Foster and Rosenzweig (2007) find decadal rural-to-urban migration rates for 15–24 year old males of about 3\% in 1961–2001; Munshi and Rosenzweig (2016) present confirmatory evidence in IHDS and the DHS.}

5.4 Robustness of Bottom Half Mobility to Alternate Assumptions

5.4.1 Non-Uniform Within-Bin Subgroup Distributions

Our calculation of mobility bounds draws on the uniformity of the rank distribution, which is given when working with the national sample. In population subsamples, uniformity is not guaranteed: the distribution of latent ranks of Muslim fathers, conditional on being in a given education bin, is not necessarily uniform. We address this concern in two ways.

First, we show in Appendix B.1 that any bias from assuming uniformity within subgroups is too small to affect our conclusions. We show that both the divergence between Muslims and SCs and the convergence between SCs and Forwards/Others are robust to defining parent education ranks within social groups rather than within the national distribution. By this rank definition, latent ranks are again uniform by construction.\footnote{We do not use this measure for our primary results because it no longer conditions on parents with comparable socioeconomic status; a parent in the least educated 50\% of forward castes has more education than a parent in the least educated 50\% of Scheduled Castes. Nevertheless, the consistency of this finding implies that the trends observed are unlikely to be driven strictly by latent rank distribution changes within education bins.}

Second, in Appendix B.1, we use parametric assumptions to impute continuous latent rank distributions from the education level distributions. We can then point-estimate bottom half mobility directly from these imputed distributions. Under the worst-case assumptions, at most 10\% of the growing gap between Muslims and SCs can be explained by changes in latent parent ranks within education bins.

To understand why the bias is small, note that while SCs and Muslims are disadvantaged on average, their education distributions still have significant overlap with higher-caste Hindus;
the perverse case of Muslims being bunched entirely at the bottom of the distribution in 1985 but not in 1960 is a theoretical concern, but very implausible in practice. Moreover, young SCs and Muslims have similar parent education distributions from earlier generations, so within-bin variation is unlikely to affect comparisons of these two groups against each other.

5.4.2 Interval Censoring of Child Ranks

We have assumed thus far that child ranks are directly observed at the midpoint of each child’s rank bin. But child ranks are also interval-censored. We address this concern in three ways.

First, when we use uncensored measures of child outcomes, such as primary or high school completion (in Figures 4C, 4D, and Appendix Figure A5), we continue to find both substantial divergence of SCs and Muslims from bottom-half families and a lack of relative progress for bottom half individuals. These measures continue to hold parent rank fixed across generations, so they are valid for cross-group comparisons over time. The Muslim-SC divergence thus cannot be an artifact of child rank censoring.

Second, note that the censoring problem for child ranks is much smaller than the censoring problem for parent ranks, because children are on average more educated than their parents. This makes their education bins more evenly distributed. In the 1960–69 birth cohort, the bottom child education bin (and the largest) contains 26.5% of the population; in 1985–89, it contains only 9%. The bias from child rank censoring will thus be considerably smaller than that from parent rank censoring, where the largest bins contain 60% of the data.

Finally, in Appendix B.2 we provide two approaches to estimate the bias in our main estimates from son censoring. First, we estimate the maximal extent of this bias by examining the effects of the best- and worst-case assumptions regarding the latent child rank distribution on our mobility estimates. This puts an upper bound on the potential bias from latent child ranks. Second, we impute these latent ranks using data on children’s wage ranks within education bins; the mobility estimates are virtually unchanged, suggesting the actual bias is small. These results suggest that using the midpoint of a child’s rank bin captures most of the meaningful variation in child ranks in our context.

6 Potential Mechanisms for Subgroup Mobility Differences

In this section, we explore mechanisms that could explain the upward mobility differences and changes across social groups in India. We focus on explaining our most striking finding: the growing mobility gap between Scheduled Castes and Muslims. Understanding the divergence
between these groups is both important in its own right in explaining mobility trends for a third of India’s population, and for understanding the drivers of mobility among marginalized groups in India and other developing countries. These analyses are suggestive, but they point toward affirmative action as a key mechanism for the SC/Muslim divergence, and largely reject (i) differential fertility, (ii) geography, and (iii) differential occupational patterns as mechanisms.

6.1 Affirmative Action for Scheduled Groups

First, we consider the hypothesis that the basket of programs and policies targeted to Scheduled Castes has driven the increase in upward mobility of SCs relative to Muslims since the 1950s. Affirmative action for SCs is primarily comprised of reservations (positions only available to SCs) in higher education admissions, political offices, and public sector employment. There are also direct educational benefits such as scholarships and dedicated schools for SCs.

To study how affirmative action affects bottom half mobility, we exploit a change in 1977 in the social groups eligible for Scheduled Caste status, studied in Cassan (2019). Between 1956 and 1977, the list of social groups that was eligible for Scheduled Caste status varied across regions within states; this inconsistency was left over from the reorganization of states along linguistic lines in 1956. In 1977, a federal law harmonized these lists within states, arbitrarily moving many additional groups into the SC designation, making them eligible for SC-targeted benefits. This policy change makes it possible to examine the impact of SC status, while controlling for a group’s ethnicity, historical experience, and narrow geographic region. This policy change is a good natural experiment because a clear federal rule dictated which groups would change status and was applied across the country without discretion.

We use data from Cassan (2019) to test whether groups newly added to scheduled lists experienced upward mobility gains. We divide SCs into: (i) those classified as SCs in 1956 (whom we call early SCs); and (ii) those who obtained protected status only in 1977 (whom we call late SCs). As in Cassan (2019), we assume that individuals needed to be 6 or younger in 1977 to benefit in terms of education from the change in status.\footnote{We find similar results if we use a threshold of 11 or younger, also used in Cassan (2019).} We therefore treat individuals born later than 1970 as being in the late SC group.

We assign individuals to early and late SC groups using the IHDS’s \textit{jati}-level group identifiers.\footnote{A jati is a caste identifier that is more granular than the broad Scheduled Caste category, which includes many jatis.} Figure 8 shows the upward mobility trajectory of the early and late SC groups, showing bounds on $\mu_{50}^{50}$ over time. In the 1950s and 1960s, the early SC group experiences rapid relative
increases in mobility and diverges from the late SC group, which has not yet obtained protected status. Beginning with the 1970 birth cohorts when the late SC group obtains protected status, it begins to close the mobility gap. The mobility gap peaks right before the late SC group gains SC status and the gap then steadily closes through the remainder of the sample period.

We formally estimate the impact of SC status with the following regression based on Cassan (2019):

\[
Y_{i,j,r,c} = \beta_0 + \beta_1 \text{LateSC}_{j,r} + \beta_2 \text{post}_c + \beta_3 (\text{post}_c \times \text{LateSC}_{j,r}) + \nu_{j,r} + \eta_{r,c} + \zeta_{j,c} + \epsilon_{i,j,r,c}, \tag{6.1}
\]

where \(Y_{i,j,r,c}\) is the education rank of child \(i\) in jati \(j\), region \(r\), and birth cohort \(c\). We include fixed effects for jati \(\times\) region (\(\nu\)), region \(\times\) cohort (\(\eta\)), and jati \(\times\) cohort (\(\zeta\)). These fixed effects exploit the fact that the same jati group could be an early SC or a late SC depending on its region within a state. The coefficient of interest, \(\beta_3\), therefore compares individuals in late SC groups born after 1970 to those born earlier in the same narrow social group and the same region, controlling for outcomes of individuals from early SC groups in the same region, and for outcomes of members of the same jati group in other regions. Regressions are clustered at both the jati and the region level.

Using bottom half mobility as a \(Y\) variable in this specification is challenging because, for each group, it can at best be bounded. Instead, we proxy bottom half mobility by restricting the sample to a set of father ranks that is as close as possible to the bottom 50% but can also be point-identified as consistently as possible across the different decades. To do this, we define a \(Y\) variable equivalent to \(\mu_{59}^0\) in the 1950s birth cohort, \(\mu_{57}^0\) in the 1960s, and \(\mu_{58}^0\) in the 1970s and 1980s.

Column 1 of Table 3 shows the result from Equation 6.1. The cohorts exposed to the basket of affirmative action policies experience an 8 rank-point increase in upward mobility. Column 2 shows robustness to a specification where we limit the sample to sons of fathers with less than two years of education in all years instead of the sons of fathers in the approximate bottom 60% as noted above. The point estimate is similar. Column 3 (using the same sample as Column 1) shows that both the 1970s and 1980s birth cohorts of late SCs benefited relative to the earlier cohorts. These results accord with Cassan (2019), who found that gaining SC status led to a 10 percentage point increase in literacy and a 7 percentage point increase in secondary school attainment. However, it was not necessarily the case that these gains would accrue to children of low education parents; indeed, affirmative action’s critics in
India often suggest that it is captured by a “creamy layer” of the already prosperous among targeted groups, a story that our findings reject.

These results are consistent with affirmative action having induced a large effect on upward mobility for Scheduled Caste groups. The rank-point gain of late SCs is comparable in magnitude to the upward mobility gap in the 1980s between Muslims and SCs, and it emerged over only 20 years of affirmative action. Note that this specification does not directly test for the effect of affirmative action on SCs as a whole vis-à-vis Muslims. However, if these treatment effects for early and late SCs are externally valid for the potential effect of affirmative action on Muslims, then affirmative action could explain the entire contemporary mobility gap between Scheduled Castes and Muslims. On the other hand, because we are limited to relatively coarse variation in demographic groups over time, these results are suggestive but not decisive.

6.2 Group Differences and Fertility

Muslims on average have higher fertility than other groups. In this section, we consider whether higher fertility could cause lower mobility for Muslims, perhaps through a household expenditure channel where children with many siblings received fewer educational inputs. We explore this question in a regression framework. We estimate the number of siblings of each individual based on their mothers’ responses to the IHDS women’s survey, which has a question about the number of live births. This variable differs from total fertility by excluding children who have died. We only have information on mothers’ fertility for children who live with their mothers; we therefore focus on sons under the age of 30, for whom the coresidence rate is highest. The average number of siblings for Muslims is 4.1, compared with 3.0 for both SCs and STs, and 2.6 for Forwards/Others.

As in Section 6.1, we require a point estimate of upward mobility to use in a regression. We use \( \mu_0 \), which can be point estimated as the education of children whose fathers completed two or fewer years of education. We regress this mobility measure on a set of group indicators (Muslim, SC, ST), an urban indicator, and a set of state fixed effects, showing the results in Table A5. Column 1 shows the Muslim mobility gap in the full sample and Column 2 shows the same gap in the set of sons whose coresident mother answered the women’s survey. The Muslim upward mobility disadvantage is 12 rank points, without adjusting for fertility. Column 3 adds

---

57 For daughters, coresidence begins to fall rapidly as soon as schooling is finished, leaving too little sample to estimate mobility among coresiders. Restricting the sample to individuals aged 20–23 as we did for the SECC would cut our sample too much to obtain informative estimates.

58 We find similar estimates if we use children of fathers with strictly less than 2 years of education.
a control for the number of siblings, which brings the Muslim mobility gap down by 25%.

High fertility can thus explain at most 25% of the Muslim mobility disadvantage relative to SCs. This is likely to be an upper bound, because household income is a direct cause of both children’s education and parental fertility (Schultz, 2003). Higher fertility can thus explain at most a small share of the present-day mobility disadvantage experienced by Muslims.

6.3 Geography and Subgroup Differences

We examine here whether Muslims live in low mobility places, or whether they have low mobility after conditioning on place. Because the SECC does not record religion, we use the IHDS and explore cross-state and cross-district variation.

SCs, STs and Muslims are unevenly distributed across the country; the 25th-percentile district in SC population share is only 8% SC. The equivalent numbers for STs and Muslims (0.4% and 2.7%, respectively) reflect the greater geographic concentration of these groups.

To examine the relationship between place and subgroup outcomes, we regenerate father and son education ranks within states and within districts. Mobility estimates generated in this way thus describe the ability of disadvantaged children to increase their relative rank within their own district. If low overall mobility for Muslims is a function of living in districts where everyone has low opportunity, then their within-district mobility gap with Forwards/Others should be substantially smaller than the national mobility gap.

The results are shown in Figure 9A for the father-son mobility gap in the 1985–89 birth cohorts. The first set of bars shows the mobility gap between Forwards/Others and each of the three marginalized groups. For simplicity, we show the midpoint of the bounds; the width of the bounds is less than one rank point in all cases. Upward mobility for the Forward/Others reference group is 42.

The following two sets of bars show the same gaps for within-state and within-district ranks. District of residence explains about 18% of the Muslim upward mobility gap, 44% of the Scheduled Caste upward mobility gap, and 60% of the Scheduled Tribe mobility gap.

The result for Scheduled Tribes is consistent with the fact that STs disproportionately live in remote areas of the country with low levels of public goods and educational attainment. Given the uneven distribution of SCs and Muslims throughout India, the unimportance of district as an explanation for their mobility differences is noteworthy. Muslim disadvantage

---

59 An additional sibling is associated with 2.4 fewer rank points in the outcome distribution.
60 IHDS districts are not representative so these results should be treated with caution; however, the ordering of the changes is the same when we use only within-state ranks—the middle set of bars in Figure 9A.
cannot be explained by the broad regions in which Muslims live. However, these results do not rule out the possibility that finer geographic definitions (such as urban neighborhoods) could explain a greater share of the mobility gap; unfortunately, higher resolution analysis is not possible with the data available at this time. While these results show that location is not a major mediator of Muslim disadvantage; recall that Section 5.3 shows that location is an important predictor of mobility in the aggregate.

6.4 Occupations, Returns to Education, and Subgroup Differences

We next show that occupational choices and returns to education cannot explain the low and falling upward mobility of Muslims. Figure 9B shows Mincerian returns to education for the different social groups, calculated in three ways: (i) household log income on household head education (IHDS); (ii) individual log wages on individual education (National Sample Survey or NSS); and (iii) household log consumption on household head education (NSS).\textsuperscript{61} Across all three measures, there is no evidence that Muslims have lower returns to education than Scheduled Castes or Tribes. The point estimates for Muslims are higher than for SCs in all cases, though both Muslims and SCs have lower returns to education than Forward/Others. Mincerian returns may not reflect the causal effect of education on income and consumption, but there is no evidence here that Muslims are choosing less education because their returns are lower.

Muslims are more likely to work as small-scale entrepreneurs than the other major social groups (Figure 9C), but the data rejects the hypothesis that this difference is a major driver of low mobility or mobility loss. Figure 9D divides the IHDS sample into individuals who own their own business (right panel) and individuals who do not (left panel). We pool SCs and STs for this graph because very few SCs and STs own businesses, leading to small samples. The divergence in upward mobility between SC/STs and Muslims is sustained and of similar magnitude both among business- and non-business owning families.

7 Conclusion

In this paper, we present a set of tools that are well-suited to measuring intergenerational mobility, especially in developing countries or other contexts where high-quality income data

\textsuperscript{61}In each case, we regress the outcome variable on individual years of education, age, and age squared. We restrict the data to men aged 18–64 to avoid concerns about selection into labor markets. Results are similar if we restrict to young ages (reflecting education of the youngest birth cohorts), if we include women and men, and if we include additional controls.
linked across generations are unavailable. Our partial identification approach takes seriously the loss of information given data that report education in coarse rank bins. We propose a measure, bottom half mobility, which: (i) isolates intergenerational mobility from growth and inequality; (ii) is analogous to the popular absolute upward mobility measure; (iii) is informative about intergenerational mobility even when education data are very coarse; and (iv) is easy to calculate. Bottom half mobility is also the first measure of intergenerational educational mobility that is meaningful for cross-group analysis across contexts; the absence of such a measure has made it difficult to study subgroup mobility in developing countries.

In our analysis of India, we find that in spite of enormous economic and political changes, upward mobility has barely changed from the 1950s to the 1980s birth cohorts. This lack of change overall can be decomposed into substantial gains for Scheduled Castes/Scheduled Tribes and substantial losses for Muslims. The falling mobility of Muslims has not previously been noted in part because there has been no prior methodology for creating comparable rank bins across cohorts. Our estimate of the causal effect of India’s basket of affirmative action policies targeted to Scheduled Castes suggests the effect of these policies may be large enough to explain the entire Scheduled Caste/Muslim divergence. However, more research is needed to elucidate the factors behind low Muslim mobility in India.

Our work has only begun to describe the wide geographic and cross-group variation in intergenerational mobility in India. As in the U.S., individuals growing up in different parts of India, even conditional on similar economic conditions in the household, can expect vastly different opportunities and outcomes throughout their lives.

Intergenerational mobility is a crucial policy objective even in the context of high economic growth and improvements in income for all social groups in modern India. The best opportunities remain scarce, and debates regarding who will be eligible for social programs and positions in universities that provide access to those opportunities are extremely heated. Moreover, even if there is growth on average, the extent of intergenerational mobility across groups determines whether Muslims, Scheduled Castes, and Scheduled Tribes will occupy a position of permanent disadvantage in the long run.

Our high geographic resolution mobility datasets are posted online along with the code used to construct these estimates. Future work investigating the causes of geographic and social group differences in upward mobility has the potential to inform policies that expand the equality of opportunity in India.
References


Connolly, Marie, Miles Corak, and Catherine Haeck, “Intergenerational Mobility between and within Canada and the United States,” Journal of Labor Economics, 2019, 37 (S2).


Galor, Oded and Joseph Zeira, “Income distribution and macroeconomics,” The review of
Güell, Maia, José V Rodríguez Mora, and Christopher I. Telmer, “The informational content of surnames, the evolution of intergenerational mobility, and assortative mating,” Review of Economic Studies, 2013, 82 (2).


Mohammed, AR Shariq. “Does a good father now have to be rich? Intergenerational income mobility in rural India,” Labour Economics, 2019, 60.


Panel A of the figure shows the average child education rank in each parent education rank bin for the 1960–69 and 1985–89 birth cohorts. The vertical lines show the boundaries for the bottom parent bin, which corresponds to less than two years of education. The solid line corresponds to the 1960–69 birth cohort and the dashed line to the 1985–89 birth cohort. Points are displayed at the midpoint of each parent rank bin. Panel B shows the 1960–69 moments again, along with two simulated conditional expectation functions which are equally good fits to the moments. Panel C shows bounds on father-son CEFs. Source: IHDS 2012.
Figure 2

The figure shows bounds on three mobility statistics for the 1960–69 and 1985–89 birth cohorts, estimated on father-son pairs in India. For reference, we display estimates of similar statistics from USA and Denmark. Data on rank-rank education gradients for USA and Denmark are from Hertz et al. (2008). For $p_{25}$ and $\mu_{0.50}^5$, the USA and Denmark references are income mobility estimates from Chetty et al. (2014a). The Indian measures are all based on education data. The rank-rank gradient is the slope coefficient from a regression of son education rank on father education rank. $p_{25}$ is absolute upward mobility, which is the expected rank of a son born to a father at the 25th percentile. $\mu_{0.50}^5$ is bottom half mobility, which is the expected rank of a son born to a father below the 50th percentile. Source: IHDS 2012.
Sample Calculation of $\mu_{0}^{50}$ for 1960–69 Birth Cohort

In this bin, the data tell us only that the expected child rank is 39, given a parent between ranks 0 and 58.

We want to calculate $\mu_{0}^{50}$, which is the mean value of the CEF when parent rank is between 0 and 50.

In the 2nd bin, we know only that $E(\text{child rank}) = 55$, given a parent between ranks 58 and 71.

We reject $\mu_{0}^{50} > 39$, as it would require a mean value in ranks [50, 58] of less than 39, violating monotonicity.

In this example, a $\mu_{0}^{50}$ of 41 necessitates a mean value in [50, 58] of 28, which is a violation of monotonicity.

We reject $\mu_{0}^{50} \leq 36$, as it would require a mean $Y$ in ranks [50, 58] of $\geq 55$ violating monotonicity with the next bin.

We can therefore bound $\mu_{0}^{50}$ between 36 and 39, using only the monotonicity of the CEF. Given a parent in the bottom half, a child can expect to attain a rank between 36 and 39.
Figure 4 presents bounds on national intergenerational mobility, using cohorts born from 1950 through 1989. Panels A and B show bottom half mobility ($\mu_{0}^{50} = E(y|x \in [0, 50])$), where $x$ is parent rank and $y$ is child rank. This is the average rank attained by children born to parents who are in the bottom half of the education distribution, respectively for sons and daughters. Panels C and D show an analogous measure, $E(H.S|x \in [0, 50])$ (gray) and $E(H.S|x \in [50, 100])$ (blue). The first (gray) is the share of children completing high school, conditional on having parents in the bottom half of the education distribution. The second (blue) is the share of children completing high school, conditional on having parents in the top half of the parent distribution. Source: IHDS 2012.
Figure 5 presents bounds on trends in intergenerational mobility, stratified by four prominent social groups in India: Scheduled Castes, Scheduled Tribes, Muslims, and Forward Castes/Others. The mobility measure in Panels A and C is bottom half mobility ($\mu_{50}^{50}$), or the average rank among children born to fathers in the bottom half of the father education distribution. The measure in Panels B and D is top half mobility ($\mu_{50}^{100}$), or the average rank among children born to fathers in top half of the father education distribution. Linked father-daughter education data are not available for the 1950–59 birth cohort. Source: IHDS 2012.
Figure 6
Upward Mobility by Geographic Location: National and Neighborhood Estimates

Panel A presents a map of the geographic distribution of upward mobility across Indian subdistricts and towns. Panel B shows a map of the geographic distribution of upward mobility across the wards of Delhi. Upward mobility ($\mu_{50}^0$) is the average education rank attained by sons born to fathers who are in the bottom half of the father education distribution. Green areas have the highest mobility and red areas the lowest. The heat map legend applies to both panels of the figure. Source: SECC 2012.
Figure 7
Correlates of Upward Mobility, 1985–1989 Birth Cohort

A. Rural Correlates

B. Urban Correlates

Figure 7 shows the cross-sectional relationship between local upward mobility and various characteristics of locations. Bottom half mobility ($\mu_{50}^{b0}$) is the average rank attained by sons born to fathers who are in the bottom half of the education distribution. Each point in the graph is a coefficient from a bivariate regression of bottom half mobility on the standardized variable on the Y axis. The Y variables are standardized to mean 0 and standard deviation 1 to make them comparable. Source: SECC 2012.
Figure 8
Jati Redesignation and Intergenerational Mobility

Figure 8 shows bounds on bottom half mobility $\mu_{50}^{50}$ for two social groups in India. The dark red series shows upward mobility for groups that were designated as Scheduled Castes beginning in the 1950s. The black series shows upward mobility for groups that were not designated as Scheduled Castes until 1977; birth cohorts later than 1970 (outside the grey box) are those who were young enough to benefit. Source: IHDS 2012.
Panel A presents the bottom-half mobility disadvantage relative to Forwards/Others faced by Muslims, Scheduled Castes and Scheduled Tribes, progressively adding state and district fixed effects. Upward mobility is partially identified; for simplicity, we show the midpoint of the bounds, which in all cases span less than a single rank point. Panel B shows 95% confidence intervals for the Mincerian return to household log income (IHDS 2012), individual log wages (NSS 2012), and household log per capita income (NSS 2012). Panel C shows the share of individuals who report that they work in their own business, by social group and time. Panel D shows bottom half mobility for the major social groups, separated by individual business ownership. Scheduled Castes and Tribes are pooled to increase power, since few members of either group own businesses. Source for Panels C and D: NSS 2012.
### Table 1
Changes in Upward Mobility Over Time

#### A. Father/son pairs

<table>
<thead>
<tr>
<th></th>
<th>All groups</th>
<th>Forward/Others</th>
<th>Muslims</th>
<th>SCs</th>
<th>STs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960–1969</td>
<td>[36.6, 39.0]</td>
<td>[41.8, 44.0]</td>
<td>[31.3, 33.6]</td>
<td>[32.9, 35.2]</td>
<td>[29.4, 31.3]</td>
</tr>
<tr>
<td></td>
<td>{35.7, 39.8}</td>
<td>{40.6, 45.2}</td>
<td>{29.4, 35.5}</td>
<td>{31.5, 36.6}</td>
<td>{27.1, 33.6}</td>
</tr>
<tr>
<td>Change over time</td>
<td>[-1.9, 0.6]</td>
<td>[-2.7, -0.5]</td>
<td>[-4.7, -2.3]</td>
<td>[1.8, 4.1]</td>
<td>[1.8, 3.7]</td>
</tr>
<tr>
<td></td>
<td>{[-2.9, 1.6]}</td>
<td>{[-4.4, 1.1]}</td>
<td>{[-7.1, 0.1]}</td>
<td>{-0.4, 6.3}</td>
<td>{-1.3, 6.8}</td>
</tr>
<tr>
<td>Fraction overlapping bounds</td>
<td>0.818</td>
<td>0.322</td>
<td>0.050</td>
<td>0.102</td>
<td>0.118</td>
</tr>
</tbody>
</table>

#### B. Father/daughter pairs

<table>
<thead>
<tr>
<th></th>
<th>All groups</th>
<th>Forward/Others</th>
<th>Muslims</th>
<th>SCs</th>
<th>STs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960–1969</td>
<td>[34.9, 41.0]</td>
<td>[38.7, 44.8]</td>
<td>[33.5, 38.9]</td>
<td>[31.3, 36.8]</td>
<td>[31.4, 33.8]</td>
</tr>
<tr>
<td></td>
<td>{34.1, 41.8}</td>
<td>{37.6, 46.0}</td>
<td>{31.7, 40.7}</td>
<td>{29.8, 38.3}</td>
<td>{29.0, 36.2}</td>
</tr>
<tr>
<td>1980–1989</td>
<td>[35.4, 35.5]</td>
<td>[38.0, 38.2]</td>
<td>[32.0, 33.5]</td>
<td>[32.9, 34.2]</td>
<td>[30.4, 30.5]</td>
</tr>
<tr>
<td></td>
<td>{34.6, 36.2}</td>
<td>{36.8, 39.3}</td>
<td>{31.0, 34.6}</td>
<td>{31.6, 35.5}</td>
<td>{28.4, 32.4}</td>
</tr>
<tr>
<td>Change over time</td>
<td>[-5.6, 0.6]</td>
<td>[-6.9, -0.5]</td>
<td>[-6.9, -0.0]</td>
<td>[-3.9, 2.9]</td>
<td>[-3.4, -0.9]</td>
</tr>
<tr>
<td></td>
<td>{-6.7, 1.7}</td>
<td>{-8.5, 1.1}</td>
<td>{-8.9, 2.0}</td>
<td>{-5.9, 4.9}</td>
<td>{-6.5, 2.1}</td>
</tr>
<tr>
<td>Fraction overlapping bounds</td>
<td>0.802</td>
<td>0.244</td>
<td>0.446</td>
<td>0.982</td>
<td>0.344</td>
</tr>
</tbody>
</table>

Table 1 shows estimates of full sample and subgroup bottom half mobility ($\mu_{0.50}^{\text{mob}}$) for the 1960–69 and 1980–89 birth cohorts for father-son (Panel A) and father-daughter (Panel B) pairs. We show both bounds (in square brackets) and 90% confidence sets (in curly braces) on those bounds. The table also reports the bounds and 90% confidence sets on the change in bottom half mobility between these two time periods. We obtain confidence sets by generating 1,000 bootstrap draws, estimating bounds on each bootstrap draw, and following the framework in Chernozhukov et al. (2007) to form 90% confidence sets from bootstrapped bounds. Because these are confidence sets rather than confidence intervals, instead of $p$-values we show the fraction of bootstraps in which the 1960–69 and 1980–89 bounds are overlapping. Source: IHDS (2012).
## Table 2
### Group Differences in Upward Mobility

<table>
<thead>
<tr>
<th></th>
<th>F/O minus SC</th>
<th>F/O minus Muslim</th>
<th>SC minus Muslim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Father/son ($\mu_{50}^{50}$)</td>
<td>[4.6, 5.0]</td>
<td>[11.6, 12.1]</td>
<td>[6.9, 7.3]</td>
</tr>
<tr>
<td></td>
<td>{2.8, 6.9}</td>
<td>{9.8, 13.9}</td>
<td>{4.5, 9.7}</td>
</tr>
<tr>
<td>Fraction overlapping bounds</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Father/daughter ($\mu_{50}^{50}$)</td>
<td>[4.2, 4.5]</td>
<td>[5.1, 5.5]</td>
<td>[0.8, 1.1]</td>
</tr>
<tr>
<td></td>
<td>{1.8, 6.9}</td>
<td>{3.0, 7.6}</td>
<td>{-2.1, 4.0}</td>
</tr>
<tr>
<td>Fraction overlapping bounds</td>
<td>0.000</td>
<td>0.000</td>
<td>0.509</td>
</tr>
<tr>
<td>Father/son ($\mu_{50}^{100}$)</td>
<td>[4.8, 5.3]</td>
<td>[9.0, 9.4]</td>
<td>[3.9, 4.3]</td>
</tr>
<tr>
<td></td>
<td>{3.3, 6.8}</td>
<td>{5.7, 12.7}</td>
<td>{0.7, 7.6}</td>
</tr>
<tr>
<td>Fraction overlapping bounds</td>
<td>0.000</td>
<td>0.000</td>
<td>0.012</td>
</tr>
<tr>
<td>Father/daughter ($\mu_{50}^{100}$)</td>
<td>[7.7, 8.0]</td>
<td>[7.8, 8.2]</td>
<td>[0.0, 0.4]</td>
</tr>
<tr>
<td></td>
<td>{4.0, 11.7}</td>
<td>{5.2, 10.8}</td>
<td>{-3.9, 4.3}</td>
</tr>
<tr>
<td>Fraction overlapping bounds</td>
<td>0.000</td>
<td>0.000</td>
<td>0.329</td>
</tr>
</tbody>
</table>

Table 2 shows estimates of cross-group differences in bottom half mobility ($\mu_{50}^{50}$) and top half mobility ($\mu_{50}^{100}$) in the 1980-89 birth cohorts. F/O stands for Forward-Others and SC stands for Scheduled Castes. We show both bounds (in square brackets) and 90% confidence sets (in curly braces) on those bounds. We obtain confidence sets by generating 1,000 bootstrap draws, estimating bounds on each bootstrap draw, and following the framework in Chernozhukov et al. (2007) to form 90% confidence sets from bootstrapped bounds. Because these are confidence sets rather than confidence intervals, instead of p-values we show the fraction of the bounds for the two social groups that are overlapping. For example, the value of 0.509 in the final column indicates that 50.9% of the bootstraps generate overlapping bounds for the two groups. Source: IHDS (2012).
<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post * Late SC</td>
<td>8.432***</td>
<td>6.764***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.794)</td>
<td>(1.555)</td>
<td></td>
</tr>
<tr>
<td>1970-79 * Late SC</td>
<td></td>
<td>6.739**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.025)</td>
<td></td>
</tr>
<tr>
<td>1980-89 * Late SC</td>
<td></td>
<td>9.649***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.580)</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4502</td>
<td>3746</td>
<td>4502</td>
</tr>
<tr>
<td>r2</td>
<td>0.32</td>
<td>0.34</td>
<td>0.32</td>
</tr>
</tbody>
</table>

*p<0.10,**p<0.05,***p<0.01

Table 3 shows estimates from Equation 6.1, which describes the impact of Scheduled Caste redesignation on upward mobility. The dependent variable is the child education rank. The sample consists of SC sons of fathers with less than two years of education in the 1960s and 1970s, and SC sons of fathers with 2 or fewer years of education in the 1980s. The dependent variable thus corresponds to $\mu_{59}$ in the 1950s birth cohort, $\mu_{57}$ in the 1960s, and $\mu_{58}$ in the 1970s and 1980s. Late SC is an indicator for jati groups that were added to Scheduled Caste lists in the caste redesignation of 1977. All estimations control for region $\times$ cohort, jati $\times$ region, jati $\times$ cohort, and birth year, and are clustered at the jati and the region levels. Source: IHDS (2012).
A Appendix A: Additional Tables and Figures

Figure A1
Coresidence Rates by Age and Gender

Figure A1 shows the share of individuals who live in the same household as their father as a function of gender and age. The vertical lines indicate ages 20-23, which is the sample restriction used in the SECC for the geographic analysis. Source: IHDS (2012).

Figure A2
Bias in Mobility Estimates When Sample is Limited to Coresident Pairs

A. Father-Son Pairs

B. Father-Daughter Pairs

Figure A2 shows the bias in a measure of upward mobility when children who do not live with their parents are excluded. The bias is shown as a function of child age. The mobility measure is bottom half mobility ($\mu^{50}$), which is the expected child rank conditional on being born to a parent in the bottom half of the education distribution. Bias is calculated as the coresident-only measure minus the full sample measure. Source: IHDS (2012).
Figure A3
Robustness of Upward Mobility to Survivorship Bias

Figure A3 shows a test of survivorship bias in estimates of bottom half mobility. The figure shows estimates of bottom half mobility calculated for the 1950s to 1980–85 birth cohorts, measured separately in the 2005 and 2012 rounds of the IHDS. If there was substantial survivorship bias in the mobility measures, we would expect the estimates to differ across the two surveys because of the deaths of some of the respondents.

Figure A4
Bottom Half Mobility ($\mu_{50}^{0}$) for Mother-Son and Mother-Daughter Pairs

Figure A4 shows bounds on aggregate trends in intergenerational mobility, using cohorts born from 1950–59 through 1985–89, focusing on mother-son and mother-daughter links. The measure used is bottom half mobility ($\mu_{50}^{0}$), which is the average rank attained by children born to parents who are in the bottom half of the education distribution. The bounds are very wide because of the large share of mothers who report bottom-coded education levels. Source: IHDS (2012).
Figure A5
Trends in Mobility by Subgroup, 1950–1989 Birth Cohorts
Education Level Outcomes

Figure A5 presents bounds on intergenerational mobility, stratified by four prominent social groups in India: Scheduled Castes, Scheduled Tribes, Muslims, and Forward Castes/Others. The figure is analogous to Figure 5, but shows the expected probability that a child attains a given education level (primary in Panels A and B, and secondary in Panels C and D), conditional on having a father in the bottom half of the father education distribution. Linked father-daughter education data are not available for the 1950–59 birth cohort. Source: IHDS (2012).
Figure A6
Bottom Half Mobility, Separated by Urban/Rural Population

A. Son and Daughter Mobility for Urban and Rural Populations

Urban Sons

Rural Sons

Urban Daughters

Rural Daughters

Bottom Half Mobility

B. Mobility Gaps for Social Groups, Split by Urban/Rural

Rural Urban
Muslims
Scheduled Castes
Scheduled Tribes

Upward Mobility Gap with Forwards/Others

Source: IHDS (2012).

Figure A6A shows estimates of bottom half mobility ($\mu^{50}$) for the 1985–89 birth cohort, disaggregated by gender and by urban/rural residence at the time of the survey. Panel B of the figure shows the gap in upward mobility between each population subgroup and the Forward/Other group, disaggregated by urban and rural residence. For example, the first bar shows that Muslim upward mobility is 13.4 rank points lower than Forward/Other upward mobility. Source: IHDS (2012).
Table A1
Bin Sizes in Studies of Intergenerational Mobility

<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Birth Cohort of Son</th>
<th>Number of Parent Outcome Bins</th>
<th>Population Share in Largest Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alesina et al. (2021)</td>
<td>Many countries in Africa</td>
<td>1960–2005</td>
<td>5</td>
<td>83%</td>
</tr>
<tr>
<td>Card et al. (2018), Derenoncourt (2019)</td>
<td>USA</td>
<td>1920s</td>
<td>≥ 17</td>
<td>41%</td>
</tr>
<tr>
<td>Gjell et al. (2013)</td>
<td>Spain</td>
<td>~ 2001</td>
<td>9</td>
<td>27%</td>
</tr>
<tr>
<td>Guest et al. (1989)</td>
<td>USA</td>
<td>~ 1880</td>
<td>7</td>
<td>53.2%</td>
</tr>
<tr>
<td>Hnatkovska et al. (2013)</td>
<td>India</td>
<td>1918-1988</td>
<td>5</td>
<td>Not reported</td>
</tr>
<tr>
<td>Knight et al. (2011)</td>
<td>China</td>
<td>1930–1984</td>
<td>5</td>
<td>29%</td>
</tr>
<tr>
<td>Lindahl et al. (2012)</td>
<td>Sweden</td>
<td>1865-2005</td>
<td>8</td>
<td>34.5%</td>
</tr>
<tr>
<td>Long and Ferrie (2013)</td>
<td>Britain</td>
<td>~ 1850</td>
<td>4</td>
<td>57.6%</td>
</tr>
<tr>
<td></td>
<td>Britain</td>
<td>~ 1949-55</td>
<td>4</td>
<td>54.2%</td>
</tr>
<tr>
<td></td>
<td>USA</td>
<td>~ 1850-51</td>
<td>4</td>
<td>50.9%</td>
</tr>
<tr>
<td></td>
<td>USA</td>
<td>~ 1949-55</td>
<td>4</td>
<td>48.3%</td>
</tr>
</tbody>
</table>

Table A1 presents a review of papers analyzing educational and occupational mobility. The sample is not representative; we focus on papers where interval censoring may be a concern. The column indicating number of parent outcome bins refers to the number of categories for the parent outcome used in the main specification. The outcome is education in all studies with the exception of Long and Ferrie (2013) and Guest et al. (1989), in which the outcome is occupation.

62 Many countries are studied; the table shows illustrative statistics for Ethiopia, one of the largest countries in the sample.
63 Number of parent bins refers to the most granular years of education available, from Card et al. (2018) Figure 1. Other analyses in Card et al. (2018) include coarser bins. Source for population share in largest bin: Census Bureau (1940).
64 Includes all people born after about 1990.
65 Includes all people born after about 1960.
66 This is the proportion of sons in 1976 who had not completed one year of education — an estimate of the proportion of fathers in 2002 with no education, which is not reported.
67 Estimate is from the full population rather than just fathers.
68 This reported estimate does not incorporate sampling weights; estimates with weights are not reported.
### Table A2
Transition Matrices for Father and Son Education in India

#### A. Sons Born 1950-59

<table>
<thead>
<tr>
<th>Father ed attained</th>
<th>Son highest education attained</th>
<th>&lt; 2 yrs.</th>
<th>2-4 yrs.</th>
<th>Primary</th>
<th>Middle</th>
<th>Sec.</th>
<th>Sr. sec.</th>
<th>Any higher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(31%)</td>
<td>(11%)</td>
<td>(17%)</td>
<td>(13%)</td>
<td>(13%)</td>
<td>(6%)</td>
<td>(8%)</td>
<td></td>
</tr>
<tr>
<td>&lt;2 yrs. (60%)</td>
<td>0.47</td>
<td>0.12</td>
<td>0.17</td>
<td>0.11</td>
<td>0.09</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>2-4 yrs. (12%)</td>
<td>0.10</td>
<td>0.18</td>
<td>0.22</td>
<td>0.19</td>
<td>0.16</td>
<td>0.09</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Primary (13%)</td>
<td>0.07</td>
<td>0.08</td>
<td>0.31</td>
<td>0.16</td>
<td>0.19</td>
<td>0.08</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Middle (6%)</td>
<td>0.06</td>
<td>0.05</td>
<td>0.09</td>
<td>0.30</td>
<td>0.17</td>
<td>0.14</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>Secondary (5%)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>0.12</td>
<td>0.37</td>
<td>0.11</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Sr. secondary (2%)</td>
<td>0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.11</td>
<td>0.11</td>
<td>0.35</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>Any higher ed (2%)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.08</td>
<td>0.13</td>
<td>0.72</td>
<td></td>
</tr>
</tbody>
</table>

#### B. Sons Born 1960-69

<table>
<thead>
<tr>
<th>Father ed attained</th>
<th>Son highest education attained</th>
<th>&lt; 2 yrs.</th>
<th>2-4 yrs.</th>
<th>Primary</th>
<th>Middle</th>
<th>Sec.</th>
<th>Sr. sec.</th>
<th>Any higher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(27%)</td>
<td>(10%)</td>
<td>(16%)</td>
<td>(16%)</td>
<td>(7%)</td>
<td>(10%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;2 yrs. (57%)</td>
<td>0.41</td>
<td>0.12</td>
<td>0.16</td>
<td>0.14</td>
<td>0.09</td>
<td>0.04</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>2-4 yrs. (13%)</td>
<td>0.12</td>
<td>0.17</td>
<td>0.18</td>
<td>0.22</td>
<td>0.15</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Primary (14%)</td>
<td>0.09</td>
<td>0.05</td>
<td>0.26</td>
<td>0.18</td>
<td>0.20</td>
<td>0.09</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Middle (6%)</td>
<td>0.06</td>
<td>0.04</td>
<td>0.09</td>
<td>0.29</td>
<td>0.21</td>
<td>0.13</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Secondary (6%)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.08</td>
<td>0.12</td>
<td>0.35</td>
<td>0.16</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Sr. secondary (2%)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
<td>0.07</td>
<td>0.19</td>
<td>0.25</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Any higher ed (2%)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.09</td>
<td>0.11</td>
<td>0.73</td>
<td></td>
</tr>
</tbody>
</table>

#### C. Sons Born 1970-79

<table>
<thead>
<tr>
<th>Father ed attained</th>
<th>Son highest education attained</th>
<th>&lt; 2 yrs.</th>
<th>2-4 yrs.</th>
<th>Primary</th>
<th>Middle</th>
<th>Sec.</th>
<th>Sr. sec.</th>
<th>Any higher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(20%)</td>
<td>(8%)</td>
<td>(17%)</td>
<td>(18%)</td>
<td>(16%)</td>
<td>(16%)</td>
<td>(10%)</td>
<td></td>
</tr>
<tr>
<td>&lt;2 yrs. (50%)</td>
<td>0.33</td>
<td>0.10</td>
<td>0.19</td>
<td>0.17</td>
<td>0.12</td>
<td>0.05</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>2-4 yrs. (11%)</td>
<td>0.11</td>
<td>0.16</td>
<td>0.20</td>
<td>0.22</td>
<td>0.15</td>
<td>0.08</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Primary (15%)</td>
<td>0.08</td>
<td>0.06</td>
<td>0.24</td>
<td>0.23</td>
<td>0.18</td>
<td>0.11</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Middle (8%)</td>
<td>0.05</td>
<td>0.03</td>
<td>0.09</td>
<td>0.29</td>
<td>0.21</td>
<td>0.17</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Secondary (9%)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.06</td>
<td>0.12</td>
<td>0.31</td>
<td>0.19</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Sr. secondary (3%)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.08</td>
<td>0.17</td>
<td>0.29</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Any higher ed (4%)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.05</td>
<td>0.10</td>
<td>0.17</td>
<td>0.66</td>
<td></td>
</tr>
</tbody>
</table>

#### D. Sons Born 1980-89

<table>
<thead>
<tr>
<th>Father ed attained</th>
<th>Son highest education attained</th>
<th>&lt; 2 yrs.</th>
<th>2-4 yrs.</th>
<th>Primary</th>
<th>Middle</th>
<th>Sec.</th>
<th>Sr. sec.</th>
<th>Any higher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(12%)</td>
<td>(7%)</td>
<td>(16%)</td>
<td>(20%)</td>
<td>(16%)</td>
<td>(12%)</td>
<td>(17%)</td>
<td></td>
</tr>
<tr>
<td>&lt;2 yrs. (38%)</td>
<td>0.26</td>
<td>0.10</td>
<td>0.21</td>
<td>0.20</td>
<td>0.12</td>
<td>0.06</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>2-4 yrs. (11%)</td>
<td>0.08</td>
<td>0.17</td>
<td>0.19</td>
<td>0.24</td>
<td>0.15</td>
<td>0.09</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Primary (17%)</td>
<td>0.05</td>
<td>0.04</td>
<td>0.22</td>
<td>0.23</td>
<td>0.20</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Middle (12%)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.10</td>
<td>0.28</td>
<td>0.20</td>
<td>0.17</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Secondary (11%)</td>
<td>0.02</td>
<td>0.01</td>
<td>0.05</td>
<td>0.13</td>
<td>0.23</td>
<td>0.24</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>Sr. secondary (5%)</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.09</td>
<td>0.15</td>
<td>0.24</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>Any higher ed (5%)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.10</td>
<td>0.16</td>
<td>0.65</td>
<td></td>
</tr>
</tbody>
</table>

Table A2 shows transition matrices by decadal birth cohort for Indian fathers and sons. Source: IHDS (2012).
Table A3
Internal Consistency of Reports of Parents’ Education

<table>
<thead>
<tr>
<th></th>
<th>Father-Son (1)</th>
<th>Father-Daughter (2)</th>
<th>Father-Daughter (3)</th>
<th>Mother-Daughter (4)</th>
<th>Mother-Daughter (5)</th>
<th>Mother-Daughter (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-0.000</td>
<td>-0.018</td>
<td>-0.008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.008)</td>
<td>(0.016)</td>
<td>(0.007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child years of education</td>
<td>0.008</td>
<td>0.037*</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.021)</td>
<td>(0.011)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log household income</td>
<td>-0.005</td>
<td>-0.051</td>
<td>-0.026</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.058)</td>
<td>(0.036)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.053</td>
<td>0.054</td>
<td>-0.002</td>
<td>0.912</td>
<td>0.006</td>
<td>0.545</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.431)</td>
<td>(0.103)</td>
<td>(0.841)</td>
<td>(0.052)</td>
<td>(0.466)</td>
</tr>
<tr>
<td>N</td>
<td>1258</td>
<td>1255</td>
<td>440</td>
<td>440</td>
<td>726</td>
<td>725</td>
</tr>
<tr>
<td>r2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

*p < 0.10, **p < 0.05, ***p < 0.01

Table A3 shows measures of internal consistency when there are multiple reports of an individual’s father in the IHDS. Each column is a regression of the level difference between two different measures of a parent’s education. The constant term in Columns 1, 3, and 5 thus shows the average differences, and Columns 2, 4, and 6 effectively regress that difference on individual characteristics to measure the extent to which they predict the discrepancy. Source: IHDS (2012).
Table A4
Binned vs. Granular Education

Panel A: Binned Education

<table>
<thead>
<tr>
<th>Group</th>
<th>1960–69</th>
<th>1980–89</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>[36.6, 39.0]</td>
<td>[37.1, 37.2]</td>
</tr>
<tr>
<td>Forward/Other</td>
<td>[41.8, 44.0]</td>
<td>[41.3, 41.3]</td>
</tr>
<tr>
<td>Muslim</td>
<td>[31.3, 33.6]</td>
<td>[28.9, 29.0]</td>
</tr>
<tr>
<td>Scheduled Castes</td>
<td>[32.9, 35.2]</td>
<td>[36.9, 37.0]</td>
</tr>
<tr>
<td>Scheduled Tribes</td>
<td>[29.4, 31.3]</td>
<td>[33.1, 33.1]</td>
</tr>
</tbody>
</table>

Panel B: Granular Education

<table>
<thead>
<tr>
<th>Group</th>
<th>1960–69</th>
<th>1980–89</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>[36.5, 38.9]</td>
<td>[36.3, 37.2]</td>
</tr>
<tr>
<td>Forward/Other</td>
<td>[41.6, 43.7]</td>
<td>[41.1, 41.1]</td>
</tr>
<tr>
<td>Muslim</td>
<td>[31.2, 33.6]</td>
<td>[28.1, 29.3]</td>
</tr>
<tr>
<td>Scheduled Castes</td>
<td>[33.0, 35.2]</td>
<td>[36.5, 37.0]</td>
</tr>
<tr>
<td>Scheduled Tribes</td>
<td>[29.3, 31.3]</td>
<td>[33.4, 33.5]</td>
</tr>
</tbody>
</table>

Table A4 compares national and subgroup bottom half mobility when calculated using IHDS data downcoded to match the SECC (Panel A, identical to Table 1) and using IHDS data with unadjusted granular years of education (Panel B). The results are similar because there are very few individuals with education levels which were both in the bottom 50% and needed to be downcoded.
Table A5
Relationship Between Fertility and Subgroup Upward Mobility

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.976)</td>
<td>(1.697)</td>
<td>(1.721)</td>
</tr>
<tr>
<td>Scheduled Caste</td>
<td>-4.163***</td>
<td>-2.608**</td>
<td>-1.901</td>
</tr>
<tr>
<td></td>
<td>(0.749)</td>
<td>(1.281)</td>
<td>(1.268)</td>
</tr>
<tr>
<td></td>
<td>(1.076)</td>
<td>(1.851)</td>
<td>(1.829)</td>
</tr>
<tr>
<td>Urban</td>
<td>3.881***</td>
<td>3.812***</td>
<td>3.514***</td>
</tr>
<tr>
<td></td>
<td>(0.782)</td>
<td>(1.276)</td>
<td>(1.261)</td>
</tr>
<tr>
<td>Number of Siblings</td>
<td></td>
<td></td>
<td>-2.359***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.304)</td>
</tr>
<tr>
<td>N</td>
<td>6345</td>
<td>2347</td>
<td>2347</td>
</tr>
<tr>
<td>r2</td>
<td>0.11</td>
<td>0.15</td>
<td>0.18</td>
</tr>
</tbody>
</table>

* p<0.10, ** p<0.05, *** p<0.01

Table A5 shows estimates from regressions of child education rank on social group indicators and an individual’s number of siblings, a proxy for mother’s fertility. The sample is limited to individuals born in 1985–89 to fathers with two or fewer years of education. The outcome variable thus corresponds to $\mu_{51}^0$, a close analog of bottom half mobility ($\mu_{50}^0$). Column 1 shows the estimation without the fertility measure for the full sample. Column 2 limits the data to the set of individuals for whom mother’s fertility can be measured, and Column 3 adds the fertility variable. The effect of fertility on subgroup mobility gaps is understood as the change in the subgroup coefficient from Column 2 to Column 3. All regressions control for state fixed effects. Source: IHDS (2012).
B Appendix B: Robustness to Alternate Assumptions

B.1 Robustness to Non-Uniform Within-Bin Subgroup Distributions

Our bounds on the full sample CEF $E(y|x)$ (explained in Section 3.3) use the uniformity of the rank distribution, which is given when working with the national sample. However, when working with population subsamples (e.g. Muslims), uniformity is not guaranteed. Take the example of the 1960s, where 57% of fathers are in the lowest education bin. Conditional on being in the bottom bin, the distribution of latent ranks of Muslim fathers is not necessarily uniform.

This lack of uniformity creates a potential bias. For example, approximately 10% of the fathers in the bottom education bin are Muslims. If the latent ranks of these fathers were all concentrated at the bottom of the bin, and the latent ranks of Hindus were concentrated at the top of the bin, then the mobility gap between Hindus and Muslims would be biased upward. In other words, the gap in son outcomes between Hindus and Muslims could not be driven by a difference in outcomes conditional on father education rank, but could be driven by unobserved differences in the latent father ranks.

The extent of bias is determined by the extent to which the within-bin latent education rank distribution for each subgroup differs from the uniform distribution or how it changes over time. In this section, we present two pieces of evidence that these departures do not bias our primary results.

First, we show that the divergence of upward mobility between Scheduled Castes and Muslims is found even when we rank parents according to their position in the education distribution of their own subgroup—given this ranking, the latent rank distribution within each bin is guaranteed to be uniform. Second, we use parametric assumptions to estimate the latent rank distribution suggested by the distribution of education completion across bins. We show that the maximal bias under a range of parametric assumptions is very small and unlikely to affect our conclusions.

The issues addressed in this appendix are not unique to our analysis, but are present in any comparison of groups that conditions on education levels. However, our discussion of latent education ranks makes this concern particularly transparent.
B.1.1 Using Within-Subgroup Rank Distributions which are Uniform by Construction

We focus in this section on the finding that Scheduled Caste and Muslim upward mobility have diverged from the 1960s to the 1980s birth cohorts (Figure 5). If the latent ranks of Muslim parents fell relative to SC parents, conditional on being in each education bin, then this result could be spurious—a mechanical result of our assumption that Muslim and SC parent latent ranks are uniformly distributed within each rank bin.

We show here that this result is robust to calculating parent ranks within subgroups. Under this rank definition, the latent parent ranks are uniform by construction—the latent ranks of SCs in the bottom 50% of SCs must be uniformly distributed. The cost of making this assumption is that we are no longer comparing groups with similar levels of education—the least educated 50% of SCs have a lower level of education than the least educated 50% of Forwards and thus cannot be expected to attain the same outcomes even if there are no cross-group outcome differences after controlling for parent education. For this reason, we use national ranks in the body of the paper.

Figure B1 shows the result. Panel A repeats the result of Figure 5 for Forwards, Muslims, and SCs, using national ranks, showing changes in upward mobility ($\mu_{50}^{I}$) over time for each group. Panel B shows the same result, with parent ranks calculated within their own subgroups. The bounds in Panel B are too wide to distinguish mobility changes between SCs and Muslims, because the within-rank bottom-coding problem is more severe among the marginalized groups. More than 70% of SC parents in the 1960s report a bottom-coded education level, resulting in wide bounds on $\mu_{50}^{I}$ for this rank definition.

To tighten the bounds, we instead estimate $\mu_{70}^{I}$: the expected child outcome given a parent in the bottom 70% of the parent education distribution. Panel C shows $\mu_{70}^{I}$ calculated using national ranks, as in the body of the paper. Panel D shows $\mu_{70}^{I}$ calculated using own-subgroup ranks, as in Panel B. The divergence of SCs and Muslims, and the convergence of SCs and Forwards/Others is sustained in both of these panels. The level gap between SCs/Muslims and Forwards/Others is higher in Panels B and D because the bottom X% of SCs/Muslims represent lower levels of education than the bottom X% of Forwards/Others, whereas Panels A and C hold parent education constant.

Our claim in the body of the paper is that SCs and Muslims with parents in the least
educated 50–70% (nationally) have divergent outcomes. We show here that SCs and Muslims in the least educated 50–70% of SCs and Muslims (respectively) have similarly divergent outcomes. The consistency of our results when we calculate parent ranks within subgroups (which are uniform by construction) strongly suggests that our primary results are not driven by differential unobserved changes in the latent parent rank distributions of the individual subgroups.
Figure B1
Subgroup Upward Mobility (Fathers/Sons): National Ranks vs. Within-Subgroup Ranks

Figure B1 shows trends in upward mobility for Forward/others, Muslim, and SCs. Panel A presents bottom-half mobility by ranking fathers in the national distribution, as in the body of the paper. Panel B ranks fathers within each subgroup, recovering uniformity by construction. Panels C and D are similar to A and B, except they present bounds on $\mu_{0.70}$ (i.e., average son rank, conditional on being born to a father in the bottom 70%) rather than $\mu_{0.50}$.

B.1.2 Inferring Latent Education Rank from Parametric Assumptions

We impute the within-bin latent education rank distribution for each population subgroup by fitting a parametric function to the entire subgroup education distribution, using the binned
data. From these parameterized distributions, we then predict a continuous latent rank distribution for each subgroup. We can compare that predicted continuous latent distribution to the uniform distribution to determine the extent of bias arising from the assumption of uniformity.

For each population subgroup, we fit a normal and a lognormal distribution to the sample distribution of years of education. We then create a simulated population that has the same proportion of each subgroup as the true population, and for each individual, we draw their years of education from the fitted parametric distribution. This gives us a continuous education distribution that matches the moments from the discrete sample distribution. Finally, we transform the years of education variable into ranks with respect to the entire population. This gives us a simulated population with continuous ranks.

We focus on the 1960–69 and 1985–89 cohorts, as we aim to check the validity of our conclusion that Muslim and SC mobility have diverged over this period.

Table B1 compares the moments from the IHDS sample with the moments from the simulated distributions. For both the 1960–69 and the 1985–89 birth cohorts, the simulated moments are close matches to the raw data. The group ordering and approximate gaps between groups is preserved; the standard deviation of the simulated data is slightly higher than that of the true binned data, which is to be expected, given the truncation of the binned data.

In Table B2, we use the simulated data to examine the distribution of the latent variable within the bins where our method assumes uniformity. In particular, we examine the mean parent education rank conditional on being in the bottom 50%. As expected, parents from less educated social groups have lower latent ranks even after conditioning on being in the bottom 50%. However, the differences are very small, and they do not change much from the 1960–69 to the 1985–89 birth cohorts, under any of the distributional assumptions. Even in the worst case scenario (the lognormal distribution with constant variance), the gap between Muslim and SC parents in the bottom 50% shrinks from 2.5 to 1, a 1.5 percentage point change.

Given the average CEF slope of 0.5, this suggests that changing latent parental status within the coarse education bins can explain at most 0.75 rank points of the growing difference between Muslims and SC/STs. Under other distributional assumptions the potential bias is even smaller. In comparison, our midpoint estimate of this change from 1960–69 to 1985–89 in the body of the paper is 7.4 rank points.

69 If the subgroup distributions were all uniform within this bin, then all groups would have a mean rank of 25.
Table B1
Actual and Simulated Moments from the Education Rank Distribution

A. 1960-1969 Birth Cohort

<table>
<thead>
<tr>
<th>Binned Data</th>
<th>Simulated Distributions</th>
<th>Normal</th>
<th>Lognormal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Forward / Other</td>
<td>55.2</td>
<td>26.8</td>
<td>55.5</td>
</tr>
<tr>
<td>Muslim</td>
<td>46.7</td>
<td>24.5</td>
<td>47.3</td>
</tr>
<tr>
<td>Scheduled Castes</td>
<td>40.8</td>
<td>21.0</td>
<td>39.9</td>
</tr>
<tr>
<td>Scheduled Tribes</td>
<td>39.1</td>
<td>20.2</td>
<td>39.0</td>
</tr>
</tbody>
</table>

B. 1985-1989 Birth Cohort

<table>
<thead>
<tr>
<th>Binned Data</th>
<th>Simulated Distributions</th>
<th>Normal</th>
<th>Lognormal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
</tr>
<tr>
<td>Forward / Other</td>
<td>56.5</td>
<td>27.6</td>
<td>56.5</td>
</tr>
<tr>
<td>Muslim</td>
<td>45.1</td>
<td>26.7</td>
<td>44.9</td>
</tr>
<tr>
<td>Scheduled Castes</td>
<td>42.9</td>
<td>26.7</td>
<td>42.7</td>
</tr>
<tr>
<td>Scheduled Tribes</td>
<td>35.6</td>
<td>25.0</td>
<td>35.9</td>
</tr>
</tbody>
</table>

Table B1 shows the mean and standard deviation of the true data (IHDS), compared with the mean and standard deviation of simulated distributions, split by demographic subgroup.

We therefore consider it unlikely that changing parental position within observed rank bins can explain the growing mobility gap between SCs and Muslims. The relative positions of other groups within their bins has similarly not changed enough to substantially bias our group-level estimates.

B.2 Robustness to Adjusting for Censored Child Ranks
In the main part of the paper, we focus on bounding a function \( Y(x) = E(y|x) \) when \( y \) is observed without error, but \( x \) is observed with interval censoring. In this section, we modify the setup to consider simultaneous interval censoring in the conditioning variable \( x \) and in observed outcomes \( y \). In the mobility context, this double-censoring setup arises when the \( y \) variable is a child rank (as in Figure 4A and 4B), but not when the \( y \) variable is a child level of education (as in Figure 4C and 4D). As noted in the paper, all of our results are
Table B2
Simulated Average Parent Rank Conditional on Rank \leq 50

A. 1960-1969 Birth Cohort

<table>
<thead>
<tr>
<th>Group-level Variance</th>
<th>Constant Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Forward / Other</td>
<td>24.2</td>
</tr>
<tr>
<td>Muslim</td>
<td>24.7</td>
</tr>
<tr>
<td>Scheduled Castes</td>
<td>26.3</td>
</tr>
<tr>
<td>Scheduled Tribes</td>
<td>25.5</td>
</tr>
</tbody>
</table>

B. 1985-1989 Birth Cohort

<table>
<thead>
<tr>
<th>Group-level Variance</th>
<th>Constant Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
</tr>
<tr>
<td>Forward / Other</td>
<td>26.8</td>
</tr>
<tr>
<td>Muslim</td>
<td>24.2</td>
</tr>
<tr>
<td>Scheduled Castes</td>
<td>23.8</td>
</tr>
<tr>
<td>Scheduled Tribes</td>
<td>22.4</td>
</tr>
</tbody>
</table>

Table B2 presents the simulated average parent rank conditional on being in the bottom half of the distribution under two parametric distributions (normal and lognormal). The left panel estimates distribution mean and variance separately for each demographic subgroup; the right panel uses the same variance for each distribution, estimated from all the data. We nevertheless proceed here to examine the potential bias from ignoring the censoring of child ranks.

One approach to this problem would be to use a problem setup similar to that presented in Section 3, that takes into account the information on child ranks that is lost by binning. We developed a numerical optimization that could bound the CEF by searching over all possible joint distributions of latent $x$ and $y$ variables, but with $n^2$ the number of parameters compared with the single-censoring model, it proved computationally infeasible.

We therefore present two alternate approaches to the problem here. First, we define the latent distributions of $y$ variables that would generate the maximal and minimal mobility statistic in theory. We can then bound the mobility statistic following our standard method under these best- and worst-case assumptions. This union of these bounds is a very conservative bound on the mobility statistic given censoring in both the $y$ and $x$ variables.
Second, we can shed light on the distribution of the true average value of $y$ in each $x$ bin if other data is available. This approach is feasible whenever more information is available about children than about their parents, as is the case in our context (and in many others). Specifically, we use data on child wages to predict whether the true latent child rank distribution ($y$) is better represented by the best- or worst-case mobility scenario. The joint wage distribution suggests that the true latent distribution of $y$ in each bin is very close to the best case distribution, which we used in Section 5.

**B.2.1 Best and Worst Case Mobility Distributions**

In this section, we take a sequential approach to the double-censoring problem. We first calculate the set of child CDFs for each level of parent education that would correspond to the highest and lowest possible intergenerational mobility. From these CDFs, we can calculate the average latent rank of children in each parent bin. These may be different from the latent rank implied by assigning each child the midpoint of their bin. With these latent ranks, we can then follow the estimation procedure outlined in Section 3. This gets us a wider set of bounds that takes the censoring of child ranks into account.

To make the example concrete, consider two children who have less than 2 years of education; one is from a rich family and one is from a poor family. Assume that 20% of children in the population have less than 2 years of education. In the body of the paper, we would assume that each of these children has a rank of 10 (i.e. the midpoint of the bottom bin). But it is possible that the child from a poor family has a latent rank of 7 and the child from a rich family has a latent rank of 13. In this case, mobility would be lower than what we have measured in the paper.

Given that child rank is known only to lie in one of $h$ bins, there are two hypothetical scenarios that describe the best and worst cases of intergenerational mobility. Mobility will be lowest if child outcomes are sorted perfectly according to parent outcomes *within* each child bin, and highest if there is no additional sorting within bins.\(^{70}\)

Note that the case of perfect sorting within bins fits very poorly with the standard human capital model. In this model, the binned education data reflects a continuous demand for education with a lumpy number of years available for purchase. It is difficult to theorize a dis-

\(^{70}\)Specifically, these scenarios respectively minimize and maximize both the rank-rank gradient and $\mu_x$ for any value of $x$. To minimize and maximize $p_x$, a different within-bin arrangement is required for every $x$. We leave this out for the sake of brevity, and because bounds on $p_x$ are minimally informative even with uncensored $y$.\]
tribution where there is a large mass of rich children bunched just below a bin boundary, and no rich children just above that boundary. Given that children of rich and poor parents appear in every bin in the child distribution, the true distribution is likely to be closer to the uniform case than the perfectly ordered case. Note also that we do not consider the case of perfectly reversed sorting, where the children of the least educated parents occupy the highest ranks within each child rank bin, as it would violate the stochastic dominance condition (and is implausible).

Appendix Figure B2 shows two set of CDFs that correspond to these two scenarios for the 1960–69 birth cohort. In Panel A, children’s ranks are perfectly sorted according to parent education within bins. Each line shows the CDF of child rank, given some father education. The points on the graph correspond to the observations in the data—the value of each CDF is known at each of these points and thus the CDFs must pass through them. Children below the 27th percentile are in the lowest observed education bin. Within this bin, the CDF for children with the least educated parents is concave, and the CDF for children with the most educated parents is convex—indicating that children from the best off families have the highest ranks within this bin. This pattern is repeated within each child bin. The implausibility of this scenario is reflected by the kinked nature of these CDFs, which are unlikely to appear in the real world. Panel B presents the high mobility scenario, where children’s outcomes are uniformly distributed within child education bins, and are independent of parent education within child bin.

Each of these CDFs can be collapsed to a single mean child rank for each parent bin. From these expected child ranks, we can then use the method from Section 3 to calculate bounds on any mobility statistic. The top two rows of Table B3 shows bounds on $\mu_{50}^{50}$ and on the rank-rank gradient for the high and low mobility scenarios. Taking censoring in the child distribution into account widens the bounds on all parameters. The effect is proportionally larger for bottom half mobility, because it was so precisely estimated before—the bounds on $\mu_{50}^{50}$ approximately double in width when censoring of son data is taken into account.

These bounds are very conservative, as the worst case scenario is implausible, as noted above. In the next subsection, we draw on additional data on children, which suggests that the best case mobility scenario is close to the true joint latent distribution.

**B.2.2 Estimating the Child Distribution Within Censored Bins**

Because we have additional data on children, we can estimate the shape of the child CDF within parent-child education bins using rank data from other outcome variables that are not
censored. Under the assumption that latent education rank is correlated with other measures of socioeconomic rank, this exercise sheds light on whether Panel A or Panel B in Figure B2 better describes the true latent distribution.

Figure B3 shows the result of this exercise using wage data from men in the 1960s birth cohort. To generate this figure, we calculate children’s ranks first according to education, and then according to wage ranks within each education bin. The solid lines depict this uncensored rank distribution for each father education; the dashed gray lines overlay the estimates from the high mobility scenario in Panel B of Figure B2.

If parent education strongly predicted child wages within each child education bin, we would see a graph like Panel A of Figure B2. The data clearly reject this hypothesis. There is some additional curvature in the expected direction in some bins, particularly among the small set of college-educated children, but the distribution of child cumulative distribution functions is strikingly close to the high mobility scenario, where father education has only a small effect on child wage ranks after child education is taken into account. The last row of Table B3 shows mobility estimates using the within-bin parent-child distributions that are predicted by child wages; the mobility estimates are nearly identical to the high mobility scenario. This result suggests that our assumption in Section 5 that the latent child rank is the midpoint of the rank bin for all parent groups is not affecting our estimates very much.

Note that there is no comparable exercise that we can conduct to improve upon the situation when parent ranks are interval censored, because we have no information on parents other than their education, as is common in mobility studies.

Note finally that the potential bias from assuming uniformity within child rank bins is increasing in the size of the rank bins. Because children are more educated than parents in every cohort, this bias is smaller for children than it would be for parents. It is also smaller for the younger cohorts of children born in the 1980s than it is for the example we used here.

71 We limit the sample to the 50% of men who report wages. Results are similar if we use household income, which is available for all men. Household income has few missing observations, but in the many households where fathers are coresident with their sons, it is impossible to isolate the son’s contribution to household income from the father’s, which biases mobility estimates downward.
Figure B2
Best- and Worst-Case Son CDFs
by Father Education (1960-69 Birth Cohort)

Panel A: Lowest Feasible Mobility

Panel B: Highest Feasible Mobility

Figure B2 shows a set child CDFs conditional on each level of father education that correspond to the best and worst case scenarios for intergenerational mobility. The lines index father types. Each point on a line shows the probability that a child of a given father type obtains an education rank less than or equal to the value on the X axis in the national education distribution. The large markers show the points observed in the data.
Figure B3
Son Outcome Rank CDF
by Father Education (1960-69 Birth Cohort)
Joint Education/Wage Estimates

Figure B3 plots a son rank CDF separately for each father education level, for sons born in the 1960s in India. Sons are ranked first in terms of education, and then in terms of wages. Sons not reporting wages are dropped. For each father type, the graph shows a child’s probability of attaining less than or equal to the rank given on the X axis.

Table B3
Mobility Estimates under Double-Censored CEF

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Upward Interval Mobility ($\mu_{50}^0$)</th>
<th>Rank-Rank Gradient ($\beta$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low mobility scenario</td>
<td>[32.33, 35.90]</td>
<td>[0.55, 0.80]</td>
</tr>
<tr>
<td>High mobility scenario</td>
<td>[35.86, 38.80]</td>
<td>[0.45, 0.67]</td>
</tr>
<tr>
<td>Wage imputation scenario</td>
<td>[35.79, 38.70]</td>
<td>[0.46, 0.67]</td>
</tr>
</tbody>
</table>

Table B3 presents bounds on $\mu_{50}^0$ and the rank-rank gradient $\beta$ under three different sets of assumptions about child rank distribution within child rank bins. The low mobility scenario assumes children are ranked by parent education within child bins. The high mobility scenario assumes parent rank does not affect child rank after conditioning on child education bin. The wage imputation predicts the within-bin child rank distribution using child wage ranks and parent education.
C  Appendix C: Data Construction

This section describes the data sources and data construction in detail.

C.1  IHDS

The India Human Development Survey (IHDS) is a nationally representative survey of 41,554 households, with rounds in 2004–05 and 2011–12. Definitions of social groups are described in the body of the paper. This section focuses on linking parents to children.

The primary module of IHDS records the education of the father of the household head. A secondary module, the women’s survey, records the education of the father and mother of the female respondent, as well as the father and mother of her husband if she is married. The women’s survey is given to one or two women aged 15–49 in each household. Because of the upper age restriction on the women’s survey, the oldest daughter in our sample is born in 1962; we therefore do not have any links from mothers or links to daughters for the 1950–59 birth cohort.

Finally, we created additional parent-child links using information from the relationship field in the household roster. Specifically, we linked the household head to their children and parents. We linked the spouse of the household head to their children. We linked grandchildren of the household head to the child of the household only in cases where there was no possible ambiguity about the parents of the grandchildren. In cases with no possible ambiguity, we linked nieces/nephews of the household head to brothers of the household head. We did not link individuals on the basis of in-law relationships, because of the ambiguity in the definition of the sibling-in-law (i.e. sibling of spouse vs. spouse of sibling).

In many cases, a parent’s education is recorded in multiple ways, allowing us to cross-check the validity of the responses. For example, the household head’s father’s education may be obtained from (i) the household roster (if he is coresident); (ii) from the household head’s response to the father education question; and (iii) from his wife’s responses to the husband’s father’s education question. The average correlation between parent education measured across different sources is 0.9. Appendix Table A3 shows that the discrepancies between measures are not correlated with household characteristics.

C.2  SECC

The 2011–12 Socioeconomic and Caste Census (SECC), an administrative socioeconomic database covering all individuals in the country that was collected to determine eligibility
for various government programs.

The data underlying SECC were posted to the internet by the government, with each village and urban neighborhood represented by hundreds of pages in PDF format. Each town/village was posted for only ninety days. Over a period of two years, we scraped over two million files, parsed the embedded data into text, and translated the text from twelve different Indian languages into English. This process is described in more detail in Asher and Novosad (2020).

At the end of this process, we have individual data from approximately 450,000 villages and 2000 towns. This covers 90% of villages and 25% of towns in India; the town data are less complete because many towns had only partial data posted on the SECC web site, or were not posted at all. The set of towns in the data cover all major states of the country and have a very similar population distribution to the full distribution of towns.

We use SECC to create linked data on father and son education. As noted in the body of the paper, we focus on ages 20–23, and do not look at girls, who are much less likely to be coresident with their parents at that age. We also do not create mother-child links, because of the substantial censoring of mothers’ education ranks, described in Section 5.1.

When SECC records the relationship between individuals in a household, we create parent-child links following the same algorithm as used in the IHDS, as described above. For records where SECC did not provide family relationships, we impute the identity of the father based on the household structure. As noted, our child sample consists of men aged 20–23. We assume that a coresident man aged between 15 and 50 years older is the father. In most cases, there is only one such individual, and the father identity is directly assigned. We exclude observations where there is more than one potential father by this definition; results are virtually identical if we assume the father’s education is the mean of the candidate fathers.

To validate this algorithm, we replicated the algorithm in the IHDS, where we observe the identity of the individual’s father. In 5% of cases, the algorithm identified a father where there was none. In an additional 5% of cases, the algorithm did not identify a father (due to ambiguity) when there was one. In the 90% of cases where the algorithm identified a father and there was a father present, the correlation between the education measures was 99.7%. It is therefore unlikely that significant bias arises from the subset of SECC observations where we do not observe the relationship field.
C.3 Other data sources

This section describes several other data sources which we drew upon to calculate the correlates of upward mobility in Section 5.3.

The 2001 and 2011 Population Censuses provides basic demographic information for villages and towns, include the Scheduled Caste share. The village and town directories in the same census describe local public goods, including number of primary and high schools, and access to paved roads and electricity. Consumption and consumption inequality were calculated from the SECC using small area estimates following Elbers et al. (2003); the specific process we used is described in more detail in Asher and Novosad (2020). Average years of education in a location were calculated from the education variable in the SECC. Manufacturing jobs per capita were calculated by dividing the number of non-farm jobs recorded in the 2013 Economic Census by the 2011 census population. SC/ST segregation is the dissimilarity measure of segregation. We calculated this at the subdistrict level for rural areas, describing dissimilarity across villages. At the town level, it describes dissimilarity across enumeration blocks, which are units of about 200 households.

C.4 Data from other countries

We refer in the paper to mobility data from several other countries. Data from Denmark, Sweden, and Norway were generously shared with us by Boserup et al. (2014) and Bratberg et al. (2015). Income mobility estimates for the U.S. were drawn from Chetty et al. (2014b) and Chetty et al. (2020). Educational mobility estimates from the U.S. were calculated from a parent-child education transition matrix describing children in the 2005-2015 ACS and parents in the 2000 Census, from the data package of Chetty et al. (2020).