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Abstract

This paper proposes three innovations in the partial identification of a conditional expecta-
tion function (CEF) with an interval-censored conditioning variable. We show that bounds on
a CEF can be tightened by (i) accounting for information in the distribution of the conditioning
variable; (ii) measuring an outcome in a range of the conditioning space rather than at a
point; and (iii) imposing a curvature constraint on the CEF. While these innovations are all
straightforward, they generate new results in at least two empirical domains. First, we resolve a
longstanding problem in the estimation of mortality change among the less educated. Mortality
is rising among individuals with high school or less; but this result could simply be an artifact of
negative selection due to the shrinking share of people who do not complete high school. Treating
the education rank as an interval-censored conditioning variable, we can tightly bound the mor-
tality change in a constant part of the rank distribution, generating mortality change estimates
that are not subject to selection bias. Second, our method suggests a new measure of intergen-
erational educational mobility, which is the first such measure that is comparable across time,
across places, and across population subgroups. Our methodological approach applies to a broad
set of contexts with interval data, such as bond ratings, Likert scales, or top-coded incomes.
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1 Introduction

This paper deals with the challenge of measuring a conditional expectation function with an

interval-censored conditioning variable. We build on the approach of Manski and Tamer (2002), who

showed that such a CEF can at best be partially identified. A limitation of the Manski and Tamer

bounds is that in many empirical contexts, they are so wide as to provide no meaningful information.

We propose three innovations that can dramatically shrink the bounds on such a CEF in practice.

Two of these innovations involve new assumptions and one involves modifying the object of analysis.

While it is self-evident that bounds can be tightened with the imposition of new assumptions, the

novelty of our work is in identifying a set of modest assumptions that take us from bounds that

are too wide to be at all meaningful to bounds that are extremely precise and useful. We apply

our approach in two different empirical contexts that have drawn substantial recent attention; our

approach yields substantial dividends in both areas. We first describe the empirical contexts that

motivate this work, and then we describe the innovations and the results that they produce.

Our first application sheds light on an outstanding problem in the study of U.S. mortality

change. Many researchers have noted that mortality is rising among people with low levels of

education, such as those with a high school degree or less (LEHS) (Meara et al., 2008; Cutler and

Lleras-Muney, 2010b; Cutler et al., 2011; Olshansky et al., 2012; Case and Deaton, 2015; Case

and Deaton, 2017). But because of rising education, this group is smaller and more negatively

selected over time.1 LEHS individuals are likely to have lower relative socioeconomic status today

than in the past; if low socioeconomic status is a driver of mortality, then negative selection could

explain all of the mortality increases among the less educated (Dowd and Hamoudi, 2014; Bound

et al., 2015; Currie, 2018). This problem is unresolved—there remains considerable debate over

whether rising mortality among the less educated is a mechanical or a substantive result.

A similar challenge arises in the study of intergenerational educational mobility, our second context,

where a key parameter of interest is the conditional expectation function of a child outcome given the

164% of 50–54 year old women had less than or equal to a high school education (LEHS) in 1992, compared with
39% in 2015. Figure 1 shows mortality for 50–54 year old U.S. women as a function of the median education rank in each
of three educational categories, illustrating the simultaneous changes in mortality and in the distribution of education.
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level of parent education (Card et al., 2018; Derenoncourt, 2018). As above, a child of high school

dropouts today is hardly comparable to a child of high school dropouts in the 1920s, when dropouts

represented the majority of the U.S. population. Similar challenges arise in studies of educational

gradients in fertility, birth outcomes, and disability, as well as in the study of assortative mating (Cutler

and Lleras-Muney, 2010a; Aizer and Currie, 2014; Greenwood et al., 2014; Bertrand et al., 2016).

A seemingly straightforward way to resolve these problems would be to compare outcomes at

constant education ranks (e.g. to measure mortality among the least educated 10%), thus preserving

the size and relative status of the comparison groups over time. This is the standard approach when

income is the dependent variable: for instance, Chetty et al. (2016) study mortality at constant

income percentiles, and Chetty et al. (2014b) define upward mobility as the expected outcome of a

child born to a parent at the 25th income percentile. The challenge is that education is both lumpy

and coarsely measured. In one year, 20% of individuals may be at a bottom-coded education level,

and in another year, the same education level could represent the bottom 10%. Many earlier papers

have contended with this issue but it remains unresolved.2

We will assume in our applications that the observed level of education is an interval-censored

measure of a continuous latent education rank. This assumption arises directly out of the standard

human capital framework (Card, 1999) and is common in empirical work (Bound et al., 2015; Goldring

et al., 2016; Card et al., 2018; Coile and Duggan, 2019). In this framework, individuals select a

number of years of education based on the cost and benefit of each additional year; these costs and

benefits are determined by individual-specific constant shifters.3 The latent education rank (which is

not directly observed) reflects the combination of cost and benefit shifters that result in the observed

2Briefly, Goldring et al. (2016) derive a one-tailed test for changes in the mortality-education gradient, but they
do not calculate the bias in existing mortality estimates, nor do they estimate mortality in constant rank bins. Bound
et al. (2015) propose measurement of mortality in constant education quantiles, but achieve point estimation only
by implicitly assuming that mortality is constant across education ranks within observed intervals, an assumption that
is unlikely to hold. Others have randomly reassigned individuals across groups to obtain constant group sizes (Coile
and Duggan, 2019); we will show that this approach is equivalent to that of Bound et al. (2015). Other approaches
to this problem (discussed in more detail below) have been proposed by Case and Deaton (2015) and Cutler et
al. (2011), but none are as general as our approach.

3For instance, a child with higher cognitive ability may have a lower cost of education, and may thus obtain
more years of education. Because education is lumpy, there will be some latent variation in cognitive ability (among
other shifters) within education bins: one individual may be right at the margin of completing an additional year,
and another may be at the margin of obtaining one year less.
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level of education. It is a continuous quantity that can be treated as a proxy for socioeconomic

status much like the lumpy level of education.4

Our object of interest is thus E(y|x), where x is observed only to lie within some interval. For

example, y could be mortality and x could be the latent education rank. Manski and Tamer (2002)

derived bounds on E(y|x) when x is interval-censored, but we will show that they are much too wide

to be meaningful in the above contexts. We propose three innovations that substantially tighten the

bounds on E(y|x), sometimes by orders of magnitude. First, we derive analytical bounds on E(y|x)

when x is interval-censored and from a known distribution. Recognizing the distribution (of ranks, for

example) can permit a substantial reduction in bound width compared with the more general bounds

of Manski and Tamer (2002). In the two empirical examples noted above, the x variable is a rank

and is thus uniform by construction; we thus improve upon the bounds of Manski and Tamer (2002)

with no additional assumptions. In other cases (such as with income), distributional assumptions on

the variable of interest may be common and reasonable, and results under alternative assumptions

can be tested. Second, we derive analytical bounds for the expectation of the CEF in some interval

x∈ [a,b]. We show that E(y|x∈ [a,b]) can often be tightly bounded even when E(y|x=i) cannot for

any value of i.5 Third, we present a numerical method that further narrows the bounds by permitting

the researcher to impose a wide class of assumptions on the behavior of E(y|x). As one example, we

consider a moderate curvature constraint, the limiting case of which is a linear estimation, meaning

that our method nests the default choice of many researchers faced with interval data.6

We first demonstrate our method by calculating bounds on mortality change from 1992–2015

for less educated 50–54 year olds, a group that has been the focus of considerable recent mortality

4Note that we are not trying to estimate the causal effect of education in any of our examples. If we were, then the
level of education would be more important than the latent educational rank, because it reflects the amount of education
that was experienced. Rather, like other research on mortality and intergenerational mobility, we use education as a
proxy for the dimensions of socioeconomic status that are captured by the cost and benefit shifters that determine the
level of education. Our goal is to estimate outcomes for individuals at different levels of socioeconomic status, with that
status proxied by the level of education. Our approach is analogous to studies that condition on income percentiles
rather than income levels, recognizing that income (like education) reflects multiple dimensions of socioeconomic status.

5For example, E(Mortality|Ed Rank∈ [0,50]) can be tightly bounded, but bounds are too wide to be meaningful
for either E(Mortality|Ed Rank=25) or E(Mortality|Ed Rank=50).

6For additional background on partial identification, see Manski (2003), Tamer (2010), and Ho and Rosen (2015).
Similar problems to ours are addressed by Cross and Manski (2002), Magnac and Maurin (2008), Bontemps et
al. (2012) and Chandrasekhar et al. (2012) (all discussed in Section 2), but none are directly applicable to our context.
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research (Case and Deaton, 2015; Case and Deaton, 2017).7 The mortality change for women with

a high school degree or less (the bottom 64% in 1992 and the bottom 39% in 2015) is 129 additional

deaths per 100,000, suggesting a 28% increase in the mortality rate. In contrast, bounds on mortality

change among the bottom 64% of the education distribution (a similar group of individuals, but one

that is fixed in size and relative position in the distribution) suggest a mortality increase between 29

and 38 additional deaths per 100,000, a considerably smaller 6–8% increase. Unlike the unadjusted

estimate studied in prior work, we hold relative socioeconomic status constant by describing mortality

change at a fixed percentile of the education distribution. Changes in selection from group size and

education rank alone thus explain 71%–79% of the mortality change for this group. Examining

other subgroups and causes of death, we observe that the selection component of the unadjusted

estimate can range from 0% to 80%—there is thus no rule of thumb for correcting naive estimates.

We next show that our approach can yield dividends in the study of intergenerational mobility.

The primary measure in recent studies of intergenerational mobility is absolute upward mobility,

defined as p25=E(y|x=25), where y is a child socioeconomic rank and x is a parent rank (Chetty

et al., 2014b). If education is used as the measure of parent socioeconomic status (for instance, due

to data limitations), then E(y|x=25) can at best be bounded, because education is lumpy, as noted

above.8 We focus on an example from India, where the interval censoring problem is extreme: 60%

of fathers in older generations have bottom-coded education levels. Using these data, we show that

the bounds on p25 (and the bounds on the rank-rank gradient, another common mobility measure)

are simply too wide to be meaningful. Further, naive estimation of these quantities leads to results

that are biased and misleadingly precise.

Our approach suggests an alternative measure of upward mobility, which we describe as upward

interval mobility. This measure is defined as µ500 =E(y|x∈ [0,50]), and describes the mean value

7Education is used as a proxy for socioeconomic status in these and other mortality studies, because it is one
of the only such proxies available in vital statistics data, which do not record income.

8In studies of intergenerational mobility, education is frequently used as a measure of social status when income
data are unavailable, such as in developing countries, or in the era before administrative income data in the United
States (Black et al., 2005; Güell et al., 2013; Wantchekon et al., 2015; Card et al., 2018; Derenoncourt, 2018).
Educational mobility is also of interest even when income mobility can be measured. See, for instance, Landersø and
Heckman (2017). Like other papers on educational mobility, our paper is descriptive and does not aim to estimate
a causal effect of parent education on child education (though this causal effect is also of interest).
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of the child CEF in the bottom half of the parent rank distribution. Upward interval mobility is

of similar policy relevance to p25, but our measure can be tightly bounded given coarse education

data while absolute upward mobility cannot. Our proposed measure is to our knowledge the first

measure of intergenerational educational mobility that is suitable for comparisons across time, across

countries, and across population subgroups within countries.9

Existing work on intergenerational educational mobility has not directly addressed the challenge

caused by changing education rank bin boundaries. For example, Card et al. (2018) define upward mo-

bility in the 1920s as the 9th grade completion rate of children whose parents have 5–8 years of school,

whom they describe as “roughly in the middle of the parental education distribution” — they then com-

pare this measure with p25 in the present. Translating this into our framework, where x is a parent rank

and y is a child outcome, Card et al. (2018) are comparing E(y1|x=50) in the 1920s to E(y2|x=25) in

the present. This approach has the disadvantage of comparing upward mobility from the middle class

in the 1920s to upward mobility from a considerably lower class in the present. The same problem

is faced by Alesina et al. (2019), who define upward mobility in Africa as the likelihood that a child

born to a parent who has not completed primary school manages to do so—thus conditioning on sub-

stantially different parts of the education distribution in different times and places.10 In contrast, our

approach makes it possible to use the same measure (e.g. E(y|x=50) or E(y|x∈ [0,50])) in all periods

and contexts, because we are not constrained to the interval boundaries given in the education data.

To summarize, this paper makes three contributions. First and most generally, we derive sharp

bounds on E(y|x) and related measures when x is only observed in intervals and is from a known

distribution. We also provide a tractable numerical framework for calculating nonparametric bounds

under more complex constraints, including for contexts without monotonicity, which was previously

a challenge for interval data methods. The bulk of this paper focuses on two empirical applications

9As noted by Hertz (2005) and Aaronson and Mazumder (2008), the widely used rank-rank gradient is not
meaningful for population subgroups, because it describes rank gains relative to the subgroup rather than to the
population. Cross-group comparisons of absolute upward mobility are meaningful, but of limited value when absolute
upward mobility cannot be tightly bounded. In a cross-section, one can compare expected outcomes in any observed
parent education bin, but this measure will not be meaningful over any time period where the bin boundaries change.

10We show in Section 5, for example, that this measure corresponds to E(y>52|x∈ [0,76]) in Mozambique (where
76% of parents and 48% of children have not completed primary), but to E(y>18|x∈ [0,42]) in South Africa.
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where our bounds can contribute to an ongoing debate in the education, health, and labor literatures.

But the bounds may be of use to researchers whenever they encounter interval-censored data, which

are ubiquitous in social science and appear in contexts as diverse as bond ratings, top-coded incomes,

and Likert scales.11 Note that it is expected that bounds are tighter under known than under

unknown distributions. But the combination of our three innovations generates tight bounds in

multiple active literatures where researchers previously faced substantial barriers to estimation. Our

method is also easily generalized to use additional structural assumptions, or to measure other

conditional parameters, like a median or other percentile of the outcome distribution.

Second, we provide a new method for analysis of mortality change at different education percentiles.

Our method is the first that can generate mortality estimates in constant education percentile

bins that account for the information loss from interval censoring. We apply these methods in a

concurrent descriptive paper on U.S. mortality change (Novosad and Rafkin, 2019).

Third, we derive a measure of intergenerational educational mobility that can be precisely estimated

and is comparable across countries, across time and across subgroups, unlike earlier measures. We

expect this measure to be particularly useful to researchers working on intergenerational mobility

in developing countries or in the periods that predate universal administrative income data, e.g.

before 1980 in the United States. We also provide a framework for understanding the differences

between educational mobility measures used by other researchers. Our mobility measures are easy

to calculate and can generate useful information in many contexts where conventional measures

are too widely bounded to be useful. In a concurrent descriptive paper, we use these measures to

study long-run and cross-sectional changes in intergenerational mobility in India (Asher et al., 2019).

In the next section, we describe the setup, prove the bounds and present the numerical framework. In

Section 3, we validate the bounds and demonstrate some of their properties in a simulation. Sections 4

and 5 present the applications to the measurement of mortality and of intergenerational mobility.

Section 6 concludes. Stata and Matlab code to implement all methods in the paper is posted online.12

11We focus on education in both of our applications because the interval-censoring problem in education data
is widespread, even if it is not always recognized. Education data remain interval-censored in rank terms even as
granular administrative data become available for other variables, such as income.

12See https://github.com/paulnov/anr-bounds.
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2 Bounds on CEFs with a Known Conditioning Distribution

In this section, we derive analytical and numerical bounds on a CEF where the conditioning variable

is interval-censored but has a known distribution. The bounds are sharp and depend either on the

assumption of a weakly monotonic CEF or on the assumption that the CEF has limited curvature.

The method can further bound any statistic that can be derived from the CEF (e.g. the best linear

approximator to the CEF), or other conditional measures, like the conditional median.

We work through an example motivated by Figure 1, which plots total mortality against mean

education rank, where education is only observed in one of three education bins: (i) less than or

equal to high school (LEHS); (ii) some college; or (iii) bachelor’s degree or higher.13 We focus on

women aged 50–54, because this age group has been highlighted in other recent research, and this

group has experienced substantial education gains over the sample period. We wish to estimate

mortality in 1992 and 2015 for a group occupying the same education rank or set of ranks over

time. This is challenging because the rank bin boundaries change between 1992 and 2015. In 1992,

64% of women had LEHS education, while in 2015, this number was 39%.

We work through the example of calculating bounds on mortality among the least educated 64%

of women in all years, the set of education ranks occupied by LEHS women in 1992. This value

can be point estimated from the data in 1992, but can at best be bounded in other years where

there is no bin boundary that falls right at this percentile.

We require the concept of a continuous, latent education rank. Such a concept arises directly

out of a standard human capital framework, where years of schooling have a convex cost and

individual-specific differences in costs and benefits of schooling are constant shifters (Card, 1999).

Individuals within any given schooling bin can be ranked according to the amount that the cost

of schooling would have to change for them to prefer a higher level of schooling. The individuals

with highest latent ranks within a bin are the ones who would attain a higher level of education

given only a marginal shift in cost. Given the correlation of years of education with other positive

socioeconomic measures, we would expect the latent education rank to be correlated with mortality

13Points are plotted at the midpoint of the education rank bins.
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even within education bins. This assumption is implicit in nearly all of the papers that have wrestled

with the selection bias in measuring outcomes by education group (Cutler et al., 2011; Bound et

al., 2015; Goldring et al., 2016; Card et al., 2018; Currie, 2018; Coile and Duggan, 2019).

Holding the latent education rank constant is essential for the analysis of mortality change among

the less educated.14 Consider an extreme example where educational completion is strictly a function

of parent income, and both parent income and education have positive effects on health. High

school dropouts in 1992 would represent the bottom 20% of the income distribution, while high

school dropouts in 2015 would represent the bottom 10% of the income distribution. Even if the

conditional expectation of mortality given socioeconomic status was unchanged, we could see higher

mortality among high school dropouts in 2015 than in 1992 due to the direct relationship between

mortality and income. However, mortality among those in the bottom 10% of the latent education

rank distribution would be constant.

Note that we are not attempting to measure the causal effect of education on mortality (or on any

other outcome below). If we were, then the years of education would be a more suitable independent

variable than the latent education rank. Because the study of mortality change among the less

educated is motivated by a desire to describe the health status of those with low socioeconomic

status, the latent education rank is exactly the parameter of interest—because it reflects all the

cumulative socioeconomic disadvantages that result in a low level of educational achievement and

may also affect mortality. A similar logic applies in our examination of intergenerational mobility.

Our measurement approach is analogous to that of Chetty et al. (2016), who measure mortality

change in constant percentiles of the income distribution, rather than at constant levels of income.

We proceed in a two step process. First, we derive bounds on the CEF of mortality at each latent

education rank. Second, we extend these bounds to generate estimates of average mortality in a

bin with arbitrary rank boundaries. This section of the paper focuses on the problem of identifying

the CEF given interval data, and Sections 3 through 5 explore the empirical characteristics of the

14Education is widely used as a proxy for socioeconomic status in mortality studies because it is one of the only
proxies of socioeconomic status that is recorded in vital statistics data, which are the main large-sample record
of U.S. mortality in recent years. Some studies use education as a measure of status even when income is available
because it may have less measurement error.

9



bounds in more detail.

Figure 2 depicts the setup for 2015. The points show mortality at the midpoints of three education

bins and the vertical lines show the rank bin boundaries. The lines plot two (of many) possible

nonparametric CEFs, each of which fit the sample means with zero error.15 We aim to bound the

set of values that can be taken by CEFs like these.

Our work is related to several other papers. Manski and Tamer (2002) prove sharp bounds on

a monotonic CEF E(y|x) when x is interval-censored and from an unknown distribution. These

bounds, which we take as our starting point, are too wide to be informative about either mortality

among the less educated or about intergenerational educational mobility, and have thus not been

considered for these problems. Cross and Manski (2002) examine bounds on E(y|x,z) when the

probability distributions P (x|z) and P (y|x) are known but the joint distribution is unknown. In our

case, we impose a true conditioning distribution P (x) and use observed bin means E(y|x∈ [a,b]) to

infer bounds on E(y|x). While the problem is related, the method in Cross and Manski (2002) is best

suited to bounding settings with (at least) two conditioning variables where the joint distribution,

conditional on both variables, is desired. Our paper addresses settings in which we have imperfect

knowledge of y conditional on any variable, and seek to use the bin means and information about

the distribution of the conditioning variable itself to bound E(y|x).16

Several other studies address topics that we treat in this paper. Magnac and Maurin (2008)

focus on cases with binary dependent variables, showing that bounds are tighter under known

distributions. Bontemps et al. (2012) present partial identification results for cases where the y

15These two functions have the same mean in each bin, even if they do not cross the mean at the bin midpoint.
A naive polynomial fit to the midpoints in the graph would be a biased fit to the data because of Jensen’s Inequality.

16Although the interval censored variable can be cast as a separate conditioning variable to use the Cross and
Manski (2002) framework, there are several reasons why the Cross and Manski (2002) analysis does not readily adhere
to our setting. First, much like Manski and Tamer (2002), the bounds are too large to be useful, because while
Cross and Manski (2002) use information about the conditioning distribution, they do not leverage any additional
assumptions beyond statistical excludability to make traction. In our settings, if the underlying CEF can be extremely
non-monotonic and discontinuous, the bounds will be much too large to be useful. Second, several technical conditions
in Cross and Manski (2002) do not hold in our setting; while that analysis could be extended, we simply take Manski
and Tamer (2002) as a point of departure. Specifically, Cross and Manski (2002) give bounds on E(y|x,z) if P (y|x)
and P (z|x) are known, with z drawn from a finite distribution. To cast our setting in the Cross and Manski (2002)
framework, let mortality be y, education rank be x, and education level be z. Only education level is drawn from a finite
distribution, so we cannot swap the variables without loss of generality. But we do not observe P (y|x); indeed, this is the
object we wish to bound. We only observe P (y|z). So the analysis is better suited to a Manski and Tamer (2002) setup.
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variable is interval-censored. Chandrasekhar et al. (2012) establish methods for conducting inference

on the best linear approximator to the conditional expectation function, one statistic that we study

in our setting with interval censoring.

2.1 Nonparametric Estimation with Interval Data

Define the outcome as y and the conditioning variable as x; the conditional expectation function

is Y (x)=E(y|x). Let the function Y (x) be defined on x∈ [0,100], and assume Y (x) is integrable.

We also assume throughout that Y ≤Y (x)≤Y , that is, the function is bounded absolutely.17

With interval data, we do not observe x directly, but only that it lies in one of K bins. Let fk(x)

be the probability density function of x in bin k. Define the expected outcome in the kth bin as

rk=E(y|x∈ [xk,xk+1])=

∫ xk+1

xk

Y (x)fk(x)dx,

where xk and xk+1 define the bin boundaries of bin k. This expression holds due to the law of iterated

expectations. The limits of the conditioning variable are assumed to be known, and are denoted by x1

and xK+1. Further define the expected outcomes in the intervals directly above and below the intervals

of interest as rk+1=E(y|x∈ [xk+1,xk+2]) and rk−1=E(y|x∈ [xk−1,xk]), if they exist. Define r0=Y

and rK+1=Y . The sample analog to rk is the observed mean outcome in bin k, which we denote rk.

Sharp bounds on E(y|x) given interval measurement of x are derived by Manski and Tamer

(2002), when the distribution of x is unknown. The essential structural assumption that constrains

the CEF is Monotonicity (M):

E(y|x) must be weakly increasing in x. (Assumption M)

Note that we apply this assumption to the survival rate, which is one minus the mortality rate; how-

ever, our graphs show the mortality rate which is the parameter of interest. The CEF in the monotonic

17In most applications, parameters of interest are likely to have upper and lower bounds either in theory or in
practice. Loosening the absolute upper and lower bound restriction would result in wider bounds for the CEF in
the bottom or top intervals, but informative estimates are possible even in these outer bins. In the case of mortality,
we will impose that the upper bound is a mortality rate of 100%.
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graphs is thus monotonically decreasing.18 Manski and Tamer (2002) also introduce the following Inter-

val (I) and Mean Independence (MI) assumptions. For x which appears in the data as lying in bin k,

x in bin k =⇒ P(x∈ [xk,xk+1])=1. (Assumption I)

E(y|x, x lies in bin k)=E(y|x). (Assumption MI)

Assumption I states that the rank of all people who report education ranks in category k are actually

in bin k. Assumption MI states that censored observations are not different from uncensored

observations. These always hold in our context because all of the data are interval-censored.

If all observations of x are interval-censored, the Manski and Tamer (2002) bounds are:

rk−1≤E(y|x)≤rk+1 (Manski-Tamer bounds)

In words, the value of the CEF in each bin is bounded by the means in the previous and next bins.

We can improve upon these bounds if the distribution of x is known. In our empirical examples, the

x variable is a rank, and is thus uniform by construction. In other cases, conventional distributions

are frequently assumed (such as lognormal or Pareto for income data). Alternatively, data could

be transformed into a known distribution, for example, by transforming the conditioning variable

into ranks. We first show bounds under the assumption that x has a uniform distribution because

the analytical results are particularly parsimonious, but we derive all of our results under a general

known distribution. We therefore consider the following assumption (U):

x∼U(x0,xK+1) (Assumption U)

where U is the uniform distribution.19

18Mortality is decreasing in educational attainment for every group and time period in the CDC data; it is also
a monotonically decreasing function of income (Chetty et al., 2016).

19We refer to this as an assumption for generality, but in our empirical examples, this arises directly out of the
uniformity of the rank distribution.
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If x is uniformly distributed, we know that:

E(x|x∈ [xk,xk+1])=
1

2
(xk+1−xk). (2.1)

We derive the following proposition.

Proposition 1. Let x be in bin k. Under assumptions M, I, MI and U, and without additional

information, the following bounds on E(y|x) are sharp:


rk−1≤E(y|x)≤ 1

xk+1−x
((xk+1−xk)rk−(x−xk)rk−1), x<x∗k

1
x−xk

((xk+1−xk)rk−(xk+1−x)rk+1)≤E(y|x)≤rk+1, x≥x∗k

where

x∗k=
xk+1rk+1−(xk+1−xk)rk−xkrk−1

rk+1−rk−1
.

The proposition is obtained from the insight that the value of E(y|x=i) at a point i in bin k (below

the midpoint) will only be minimized if all points in bin k to the left of i have the same value. Since all

points to the right of i are constrained by the outcome value in the subsequent bin k+1, E(y|x=i) will

need to rise above the Manski and Tamer (2002) lower bound as i increases, in order to meet the bin

mean. Intuitively, consider the point E(y|x=xk+1−ε). In order for this point to take on a value below

the bin mean rk, it needs to be the case that virtually all of the density in bin k lies between xk+1−ε

and xk+1. This is ruled out by the uniform distribution, and indeed by most distributions; for many

distributions, therefore, the Manski and Tamer (2002) bounds are excessively conservative, especially

near bin boundaries. We prove the proposition and provide additional intuition in Appendix B.

We generalize the proposition to obtain the following result for an arbitrary known distribution of x:

Proposition 2. Let x be in bin k. Let fk(x) be the probability density function of x in bin k. Under
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assumptions M, I, MI, and without additional information, the following bounds on E(y|x) are sharp:


rk−1≤E(y|x)≤

rk−rk−1

∫ x
xk
fk(s)ds∫ xk+1

x fk(s)ds
, x<x∗k

rk−rk+1

∫ xk+1
x fk(s)ds∫ x

xk
fk(s)ds

≤E(y|x)≤rk+1, x≥x∗k

where x∗k satisfies:

rk=rk−1

∫ x∗k

xk

fk(s)ds+rk+1

∫ xk+1

x∗k

fk(s)ds.

A proof of the proposition is in Appendix B.

Figure 3 compares Manski and Tamer (2002) bounds to those obtained under the additional

assumption of uniformity, using the mortality data. The new bounds are a significant improvement,

especially where the data are particularly coarse and near the bin boundaries. For example, without

using information on the distribution type, one could not reject that the mortality rate for people

in the first bin is 100,000 per 100,000 until just before the first bin boundary. The improvements

in the other bins are less extreme but still substantial. Figure 3 also makes clear that adding more

information (via adding more bins and reducing interval censoring) will shrink the width of the

bounds; in the limit, of course, as interval censoring vanishes, the bounds shrink to a point.

Even though the bounds are much tighter once we use uniformity, we note that the bounds are

widest for the first bin. That is because the maximum bound on the CEF in the first bin is 100,000 per

100,000 (i.e., we can only impose that mortality probability does not exceed 1), although uniformity

allows us to reject that the mortality probability is 1 for most of the bin. Similarly, the minimum value

of the CEF in the last bin is 0 (i.e., we can only impose that mortality is non-negative). Once we impose

curvature constraints in the following sections, the bounds on these outside bins will shrink further.

In addition to bounding the value of Y =E(y|x) at any given point, we can also bound many

functions of the CEF, which we represent in the form M(Y ). One function of interest is the slope

of the best linear approximation to the CEF; this is difficult to bound analytically, but we bound

this numerically in Section 2.4.

We conclude the subsection by highlighting a function that describes the average value of the
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CEF over an arbitrary interval of the conditioning space, or µba=E(y|x∈ [a,b]). This function has

several desirable properties. First, it can be bounded analytically. Second, it is frequently bounded

more tightly than E(y|x). Third, it has a similar interpretation to E(y|x) and is thus likely to

be policy-relevant. We show in Sections 4 and 5 that for our applications, µba can be bounded

considerably more tightly than E(y|x).

Let f(x) represent the probability density function of x. Define µba as

µba=

∫ b
a
E(y|x)f(x)dx∫ b
a
f(x)dx

. (2.2)

We now state analytical bounds on µba given uniformity. Let Y max
x be the analytical upper bound on

E(y|x), given by Proposition 1. Let Y min
x be the analytical lower bound on E(y|x). The following

proposition defines sharp bounds on µba under the assumption that x is uniformly distributed:

Proposition 3. Let a∈ [xh,xh+1] and b∈ [xk,xk+1], with a<b. Let assumptions M, I, MI and U

hold. Then, if no additional information is available, the following bounds are sharp:


Y min
b ≤µba≤Y max

a h=k

rh(xk−a)+Yminb (b−xk)
b−a ≤µba≤

Ymaxa (xk−a)+rk(b−xk)
b−a h+1=k

rh(xh+1−a)+
∑k−1
λ=h+1rλ(xλ+1−xλ)+Yminb (b−xk)

b−a ≤µba≤
Ymaxa (xh+1−a)+

∑k−1
λ=h+1rλ(xλ+1−xλ)+rk(b−xk)

b−a h+1<k.

We prove this proposition under uniformity and under an arbitrary known conditioning distribution

in Appendix B.

We note two special cases. First, if a=b, then µba=E(y|x=a). Second, if a and b correspond

exactly to bin boundaries, then the bounds on µba collapse to a point: in this case, µba is just a

weighted average of the bin means between a and b.

In fact, µba can be very tightly bounded whenever a and b are close to bin boundaries. For intuition,

consider the following examples. If δ∈ [a,b], µba can be written as a weighted mean of the two subinter-

vals δ−a
b−aµ

δ
a+ b−δ

b−aµ
b
δ.
20 If µδa is known (because there are bin boundaries at a and δ), then any uncertainty

20The weights on each subcomponent here assume that x is uniformly distributed. A different distribution would
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about the value of the CEF in the range [a,δ] is not consequential for the bounds on µba. If b is close to δ,

the weight on the unknown value µbδ is very small, and µba can be tightly bounded. Similarly, if instead

µba is known, and b is again close to δ, then µδa can be tightly estimated even if µbδ has wide bounds.

2.2 Bounds on Arbitrary Functions of the CEF

Bounds on other functions of the CEF may be difficult to calculate analytically, but can be defined

as the set of solutions to a pair of minimization and maximization problems that take the following

structure. We write the conditional expectation function in the form Y (x)=s(x,γ), where γ is a

finite-dimensional vector that lies in parameter space G and serves to parameterize the CEF through

the function s. For example, we could estimate the parameters of a linear approximation to the CEF

by defining s(x,γ)=γ0+γ1∗x. We can approximate an arbitrary nonparametric CEF by defining

γ as a vector of discrete values that give the value of the CEF in each of N partitions; we take this

approach in our numerical optimizations, setting N to 100.21 Any statistic m that is a single-valued

function of the CEF, such as the average value of the CEF in an interval (µba), or the slope of the

best fit line to the CEF, can be defined as m(γ)=M(s(x,γ)).

Let f(x) again represent the probability distribution of x. Define Γ as the set of parameterizations

of the CEF that obey monotonicity and minimize mean squared error with respect to the observed

interval data:

Γ=argmin
g∈G

K∑
k=1

{∫ xk+1

xk

f(x)dx

((
1∫ xk+1

xk
f(x)dx

∫ xk+1

xk

s(x,g)f(x)dx

)
−rk

)2}
(2.3)

such that

s(x,g) is weakly increasing in x. (Monotonicity)

Decomposing this expression, 1∫ xk+1
xk

f(x)dx

∫ xk+1

xk
s(x,g)f(x)dx is the mean value of s(x,g) in bin k,

and
∫ xk+1

xk
f(x)dx is the width of bin k. The minimand is thus a bin-weighted MSE.22 Recall that

for the rank distribution, x1=0 and xK+1=100.

use different weights.
21For example, s(x,γ50) would represent E(y|x∈ [49,50]).
22While we choose to use a weighted mean squared error penalty, in principle Γ could use other penalties.

16



The bounds on m(γ) are therefore:

mmin=inf{m(γ) | γ∈Γ}

mmax=sup{m(γ) | γ∈Γ}.
(2.4)

For example, bounds on the best linear approximation to the CEF can be defined by the following

process. First, consider the set of all CEFs that satisfy monotonicity and minimize mean-squared error

with respect to the observed bin means.23 Next, compute the slope of the best linear approximation

to each CEF. The largest and smallest slope constitute mmin and mmax. Note that this definition of

the best linear approximator to the CEF corresponds to the least squares set defined by Ponomareva

and Tamer (2011).

Stata code to generate bounds on the CEF and on µba, and Matlab code to run these numerical

optimizations for more complex functions (as well as with the curvature constraints described below)

are posted on the corresponding author’s web site.

2.3 CEF Bounds Under Constrained Curvature

The set of CEFs that describe the upper and lower bounds in Proposition 1 are step functions with sub-

stantial discontinuities. If such functions are implausible descriptions of the data, then the researcher

may wish to impose an additional constraint on the curvature of the CEF, which will generate tighter

bounds. For example, examination of the mortality-income relationship (which can be estimated at

each of 100 income ranks, displayed in Figure A1) suggests no such discontinuities. Alternately, in a

context where continuity has a strong theoretical underpinning but monotonicity does not, a curvature

constraint can substitute for a monotonicity constraint and in many cases deliver useful bounds.

We consider a curvature restriction with the following structure:

s(x,γ) is twice-differentiable and |s′′(x,γ)|≤C. (Curvature Constraint)

23In many cases, and in all of our applications, there will exist many such CEFs that exactly match the observed
data and the minimum mean-squared error will be zero.
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This is analogous to imposing that the first derivative is Lipshitz.24 Depending on the value of C,

this constraint may or may not bind.

The most restrictive curvature constraint, C=0, is analogous to the assumption that the CEF

is linear. Note that the default practice in many studies of mortality is to estimate the best linear

approximation to the CEF of mortality given education (e.g., Cutler et al. (2011) and Goldring

et al. (2016)). In the study of intergenerational mobility (Section 5), the best linear approximation

to E(rankchild|rankparent) is a canonical mobility estimator. A moderate curvature constraint is

therefore a less restrictive assumption than the approach taken in many studies. We discuss the

choice of curvature restriction below.

In the rest of this section, we show results under a range of curvature restrictions to shed light

on how these additional assumptions affect bounds in an empirical application. In our applications

in Sections 4 and 5, we show all results under the most conservative approach of C=∞.

2.4 Numerical Calculation of CEF Bounds

This section describes a method to numerically solve the constrained optimization problem suggested

by Equations 2.3 and 2.4. We take a nonparametric approach for generality: explicitly parameterizing

an unknown CEF with limited data is unsatisfying and could yield inaccurate results if the interval

censoring conceals a non-linear within-bin CEF. In the context of mortality (and mobility, Section 5),

many CEFs of interest do not appear to obey a familiar parametric form (see Figures A1 and A3).

To make the problem numerically tractable, we solve the discrete problem of identifying the feasible

mean value taken by E(y|x) in each of N discrete partitions of x. We thus assume E(y|x)=s(x,γ),

where γ is a vector that defines the mean value of the CEF in each of the N partitions. We

use N =100 in our analysis, corresponding to integer rank bins, but other values may be useful

depending on the application. In other words, we will numerically calculate upper and lower bounds

24Let X,Y be metric spaces with metrics dX,dY respectively. The function f :X→Y is Lipschitz continuous
if there exists K≥0 such that for all x1,x2∈X,

dY (f(x1),f(x2))≤KdX(x1,x2).
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on E(y|x∈ [0,1]), E(y|x∈ [1,2]), ..., E(y|x∈ [99,100]). Given continuity in the latent function, the

discretized CEF will be a very close approximation of the continuous CEF; in our applications,

increasing the value of N increases computation time but does not change any of our results.

We solve the problem through a two-step process. Define a N-valued vector γ̂ as a candidate

CEF. First, we calculate the minimum MSE from the constrained optimization problem given by

Equation 2.3. We then run a second pair of constrained optimization problems that respectively

minimize and maximize the value of m(γ̂), with the additional constraint that the MSE is equal

to the value obtained in the first step, denoted MSE. Equation 2.5 shows the second stage setup

to calculate the lower bound on m(γ̂). Note that this particular setup is specific to the uniform

rank distribution, but setups with other distributions would be similar.

mmin= min
γ̂∈[0,100]N

m(γ̂) (2.5)

such that

s(x,γ̂) is weakly increasing in x (Monotonicity)

|s′′(x,γ̂)|≤C, (Curvature)

K∑
k=1

‖Xk‖
100

((
1

‖Xk‖
∑
x∈Xk

s(x,γ̂)

)
−rk

)2
=MSE (MSE Minimization)

Xk is the set of discrete values of x between xk and xk+1 and ‖Xk‖ is the width of bin k. The

complementary maximization problem obtains the upper bound on m(γ̂).

Note that setting m(γ)=γx (the xth element of γ) obtains bounds on the value of the CEF at

point x. Calculating this for all ranks x from 1 to 100 generates analogous bounds to those derived

in proposition 1, but satisfying the additional curvature constraint. Similarly m(γ)= 1
b−a
∑b

x=aγx

obtains bounds on µba.

The numerical method can easily permit the curvature constraint to vary over the CEF. For

example, one might believe that there are discontinuities in the CEF at bin boundaries, due to

sheepskin effects (Hungerford and Solon, 1987); high-school graduates, upon receiving a diploma,
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may indeed experience discretely lower mortality probability due to better labor-market outcomes. In

Novosad and Rafkin (2019), where we treat the mortality application in more depth, we permit the

CEF to jump at bin boundaries and but impose that the CEF is curvature-constrained within each

bin. In other settings, researchers might impose that the CEF has a large (but finite) curvature in

one portion of its domain and be more constrained elsewhere. In this paper expositing the methods,

we focus on a uniform curvature constraint for concision.

2.5 Example with Sample Data

In this section, we demonstrate the bounding method using data on the mortality of 50–54 year-old

U.S. women in 2015. We focus here on the properties of the bounds under different assumptions.

We explore mortality change in more detail in Section 4.

Panel A of Figure 4 graphs the analytical upper and lower bounds on E(y|x) at each value of

x under just the assumption of monotonicity. These bounds do not reflect statistical uncertainty

but uncertainty about the CEF in the unobserved parts of the latent rank distribution.25

We next consider a curvature-constrained CEF.26 The mortality-education data are not in them-

selves informative regarding which curvature restriction to choose. To identify a conservative

curvature constraint, we examine the curvature of a closely related conditional expectation function

that is not interval-censored: the CEF of mortality given income rank. We show this CEF in Figure

A1, using data from Chetty et al. (2016). Using a spline approximation to income rank data for

52-year-old women in 2015, we calculate a maximum C of 1.6; we use a constraint approximately

twice as high as a conservative starting point.27 Panel B of Figure 4 shows the bounds obtained

under curvature constraints of 2, 3 and 5, but without the assumption of monotonicity. Relative

to those under monotonicity, the curvature-constrained bounds are less informative at the tails of

the distribution, and more informative close to the bin midpoints.

25We do not present standard errors because we are working with the universe of deaths in a large country and
statistical imprecision is very small in this context. We discuss and present bootstrap confidence sets in Section 5
where statistical imprecision is more important.

26With neither the monotonicity nor the curvature constraint, the CEF cannot be bounded except by the
maximum possible value of the variable of interest.

27While the curvature of the income rank distribution may be different than the education rank distribution,
it is the best proxy we have given that education rank is not observed.
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In Panel C, we impose the monotonicity and curvature constraints simultaneously. Panel D shows

the limit case with C=0; the CEF in this figure is identical to the predicted values from a regression

of mortality on median education rank. Note that while stricter curvature restrictions can tighten

the bounds, this may come at the expense of ruling out a plausible CEF, even if the MSE remains

zero. In Figure 4, only Panel D has a non-zero MSE.

Table 1 presents estimates of px=E(y|x) and µba=E(y|x∈ [a,b]) for women ages 50–54 in 2015,

for various values of x, a and b, under different constraints. In 1992, 64% of women had high school

education or less, and thus occupied the bottom rank bin in the education distribution. We can

describe mortality change for this group with the measures p32 and µ640 , which respectively describe

the median and mean mortality of the bottom 64% in all periods. These measures describe mortality

at constant education ranks, even though the distribution of education levels is changing over time.

We also show measures for the bottom 20%, 50% and 39% (the share of women with LEHS in 2015).

We draw attention to three features of the table. First, the interval mean estimates (µba) are in

most cases considerably more tightly bounded than estimates of the CEF value at the midpoint

of the interval (px). µ
64
0 is nearly point identified in 1992 because 0 and 64 are very close to bin

boundaries in 1992.28 µ640 is tightly bounded in 2015 as well, regardless of the constraint set used.

µ640 and p32 are both useful summaries of mortality among the less educated, but µ640 is estimated

with at least 22 times more precision than p32. The advantage of µba over px (where x= a+b
2

) is

greatest when a and b are close to boundaries in the data.

Second, µ390 and µ640 are very robust to different bounding assumptions. Estimation is more

difficult for a measure like µ200 with boundaries far from any in the data, and the width of the

bounds depends strongly on the assumptions being made. µ200 (mortality in the least educated 20%)

thus cannot be tightly bounded even if it is of policy interest.

Third, we emphasize that the precise curvature chosen does not seem to have a large effect on

our results: that the curvature is finite helps to reduce the bounds in the bottom of the distribution

28Similarly, µ390 is nearly point estimated in 2015, where 39% of women had attained high school or less. We have used
integer approximations to these parameters for convenience; if we used the average mortality for the precise proportion of
women with less than or equal to a high school degree (µ63.6580 ), then the parameter would be precisely point identified.
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(and reject that mortality is growing discretely among this group), but our bounds are informative

even under monotonicity alone.

Finally, Column 5 shows the predicted values for each measure from the best linear approximation

to the mortality-education CEF, an object of interest in the literature. These measures are point

estimated, but their precision is misleading, as they implicitly assume away large increases in

mortality at the bottom of the distribution, increases that are consistent with the data and in fact

suggested by Figure A1. This highlights the strength of our method, which generates consistent

bounds on mortality across the education distribution under considerably less restrictive assumptions.

3 Simulation: Bounds on the U.S. Mortality-Income CEF

In this section, we validate our method in a simulation by taking data from the fully supported

U.S. mortality-income CEF, interval censoring that data based on bin boundaries in the education

data, and then recovering bounds on the true CEF from the interval-censored data. The exercise

illustrates that studying partially identified bounds permits the recovery of important features of

the CEF that might be missed by a parametric fit to the bin means. We use data on mortality

by income percentile, gender, age and year (Chetty et al., 2016). We focus on women aged 52 in

2014, the group most comparable what we have examined so far.

First, we estimate the true CEF from the mortality-income data by fitting a cubic spline with

four knots to the data, the same spline used to obtain an estimate of C. We plot this in Appendix

Figure A1.29

Next, we simulate interval censoring by obtaining the mean of the true CEF within income rank

bins based on the 2015 education rank boundaries.30 After interval censoring, we have a dataset

with average mortality in each of three bins, comparable to the data from Section 2. We compute

bounds on the CEF using only the binned data.

Panels A–D of Figure 5 present CEF bounds generated from the binned data, under monotonicity

29We use a spline approximation rather than the raw data because the variation across neighboring rank bins is
most likely idiosyncratic given the small number of deaths in an age bin defined by a single year. By using information
from neighboring points, the spline is a better estimate of mortality risk than the individual rank bin means.

30We round to the nearest integer, since we only observe integer percentiles in the data from Chetty et al. (2016).
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and curvature limits that vary from∞ (unconstrained) to 1. The dashed lines show the underlying

data. The solid circles show the constructed bin means of the censored data; these are the only

data that we use for the optimization. The solid lines show the upper and lower envelopes that

we calculate for the nonparametric CEF.

The suggested curvature constraint (C=3) yields bounds that contain the true CEF at every

point; but when we impose C=1, the constraint is excessive and the bounds do not contain the

true CEF. The true CEF is not always centered within the bounds; from ranks 25 to 40, the true

CEF is near the bottom bound, and from ranks 90 to 100, it is nearer the upper bound.

The exercise further illustrates that assuming a parametric form for the underlying CEF can

yield misleading results. A quadratic or linear fit to the data would fail to identify the convexity

at the bottom of the distribution. The strength of our method is that it makes transparent how

the structural assumptions affect the CEF bounds.

Table 2 shows bounds on a range of statistics of interest under different curvatures, as well as

the true estimate. We highlight three results. First, the interval mean measures (µba) generate tighter

bounds than the CEF values px, with no greater propensity for error. Second, C is consequential

for px, but considerably less important for µba; we obtain tight bounds even without the curvature

constraint. Third, the linear estimates generated with C=0 are biased by as much as 25% relative

to the true estimates, and sometimes produce estimates that are outside the bounds even of CEFs

with unconstrained curvature.

4 Application: U.S. Mortality Change in Constant Education Rank Bins

In this section, we apply our method to study changes in U.S. mortality for individuals at constant

ranks in the education distribution. We explore how the bounded estimates and the bound widths

change under different structural assumptions, and how this range of estimates compares to naive

estimation of changing mortality at levels of education rather than ranks.
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4.1 Prior Work on Bias from Changing Education in Mortality Estimates

The importance of compositional bias in estimates of mortality among the less educated has received

substantial attention in the literature, but the problem is largely unsolved. Note first that if the

causal effect of education on mortality is the only mechanism relating these two variables, then the

comparison over time of mortality at constant levels of education would not be subject to concerns

about selection bias. However, if a third variable, like socioeconomic status, affects both mortality

and education, then secular increases in education for the entire population may mechanically cause

higher measured mortality at all levels of education even if mortality at each education percentile is

unchanged.31 Estimating mortality among the bottom X% of the education distribution is analogous

to estimating mortality in the bottom X% of the income distribution, which is generally agreed to be

a policy-relevant measure even though levels of income at each percentile are changing over time.32

Past researchers have taken various approaches to address this issue. Cutler et al. (2011) adjust for

compositional shifts by predicting propensity to attend college using region, marital status and income,

and then using this propensity as a conditioning variable. They argue that compositional shifts are

not important for mortality changes from the 1970s to the 1990s. This approach is limited by the

extent to which changes in mortality are correlated with the available predicting variables; in many

cases (e.g. with vital statistics data), these additional variables are unavailable. Case and Deaton

(2015) and Case and Deaton (2017) argue that changes in the proportion of middle-aged whites

with LEHS from the 1990s to the present are too small to influence mortality rates; this approach

may be useful in their context but substantially limits the scope of analysis to subgroups whose

educational attainment has not changed much. Dowd and Hamoudi (2014) and Bound et al. (2015)

perform analytical exercises that suggest that compositional shifts can explain most or all of recent

mortality changes—they do this by randomly reassigning individuals across education bins so that

31It is widely recognized that the causal effect of education on mortality is different from the conditional
expectation of mortality given education (Clark and Royer, 2013; Lager and Torssander, 2012). Our paper is
concerned with the latter object only. Understanding how mortality has changed among the least educated is relevant
for understanding the distribution of health across the socioeconomic spectrum, even if the causal effect of education
on mortality is small. We take no stand on whether the conditional relationships in this paper are causal; we focus
on the descriptive relationships, which are of interest in and of themselves.

32See, for example, Chetty et al. (2016).
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the bin sizes remain constant over time. This approach implicitly assumes that mortality is constant

within each interval-censored mortality rank bin, and then rises sharply at ranks that demarcate

differences in education levels. This function would imply both that parental income and individual

motivation have no relationship with mortality after conditioning on education level (since mortality

is flat in latent education rank within education bins), and that there are dramatic sheepskin effects

in education (because the individual who was just short of completing college has substantially

higher mortality than the individual who just barely completed college). As noted in Section 2, these

assumptions are very unlikely to hold in a standard human capital accumulation framework, especially

when education is measured at coarse schooling levels rather than in years of education. Our bounds

will nevertheless permit this as a candidate CEF when curvature is totally unrestricted, but do not

permit this CEF when we disallow sharp discontinuities in the mortality-education rank function.

Goldring et al. (2016) propose a one-tailed test that describes whether the mortality-education

gradient is changing; our framework can generate a similar test, but can also bound mortality estimates

in arbitrary bins of the latent rank space. In contrast with the existing work, our method requires

no additional covariates, produces estimates of interest under minimal and reasonable structural

assumptions, and is transparent regarding the uncertainty that arises from coarse measurement of

education.

4.2 Results on Mortality Change

Mortality by education data come from the U.S. Center for Disease Control’s WONDER database

and total population by age, gender and education come from the Current Population Survey, as

in Case and Deaton (2017). Additional details on data construction are available in Appendix D.1.

As above, we assume that the observed mortality data describe a monotonic relationship between

mortality and the latent education rank. Results are virtually identical if we constrain curvature

using the parameter suggested in Section 2 and forgo the monotonicity constraint. We focus in this

section on women and men aged 50–54, because this is a group whose education composition has

shifted substantially over time.33

33We use 5-year bins for ages rather than larger bins to ensure that the average age in the bin does not change
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Panel A of Figure 6 plots mean total mortality for women age 50-54 in each education group

in 1992 and 2015, along with analytical bounds on CEFs with unconstrained curvature. Bounds are

calculated on pi=E(y|x=i) using Equation 1, where y is mortality and x is the latent education

rank. The bounds in the two periods are largely overlapping across the entire education distribution,

and too wide to infer very much about changes in mortality. In Panel B, we restrict curvature to

approximately twice the maximum curvature from the income-mortality data, using Equation 2.5.

Panel B identifies a clear decline in mortality at the top of the education distribution, but the

bounds remain minimally informative at the bottom.

The bounds on the mortality CEF at any given education rank are thus uninformative. We therefore

turn to the interval mean measures (µba), which in this case produce considerably tighter bounds. We

focus on mean mortality in the bottom 64% (µ640 ), as this describes the set of women with high school

or less in 1992. In 2015, the bottom 64% includes all women with high school or less, and some women

with some college education, but none with bachelor’s degrees or higher. For men, we focus on the

bottom 54%, the LEHS population share with in 1992; by 2015, 44% of men have LEHS, so the bottom

54% again includes some men with two-year college degrees. As in Chetty et al. (2016), we rank men

and women against members of their own gender, estimating mortality for a given percentile group of

men or women; that is, the least educated group can be interpreted as the “the 64% of least educated

women,” rather than “women in the bottom 64% of the population education distribution.” We chose

own-gender reference points because women’s and men’s labor market opportunities and choices are

often different and because women and men often share households and incomes, making population

ranks misleading. However, alternate choices could be considered and estimated with the same method.

Panel A of Figure 7 shows bounds on total mortality for women aged 50-54 in the bottom 64%.

Mortality in 1992 can be nearly point estimated, because the 0-64 rank bin interval is almost exactly

observed in the data.34 As education levels diverge from those in 1992, the bounds progressively widen.

The “x” markers in the figure plot the unadjusted estimates of mortality among women with less than

over time (Gelman and Auerbach, 2016).
3463.7% of women in this age group have a high school degree or less. We can therefore point estimate µ63.70 ,

and very tightly bound µ640 because it is so close to µ63.70 . We focus on µ640 for simplicity of description.
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or equal to high school education; these mortality estimates describe a group occupying a shrinking

and more negatively selected share of the population over time. The unadjusted estimates, which

are the object of study in most earlier work on the mortality-education relationship, significantly

overstate mortality increases relative to the constant rank group. The upper bound on mortality

gain for the bottom 64% is 8.5%, compared to the unadjusted estimate of 28%. Selection alone – the

mechanical effect of measuring mortality in different education ranks – thus accounts for 71%–79%

of the unadjusted mortality change for this group.

Panel B shows the same figure for men. The unadjusted estimates are closer to the bounds here

because men have gained less education than women over this period. The negative selection of less

educated men is thus relatively constant over this time period, a point noted by Case and Deaton

(2017). Mortality change for men is bounded by the interval [−7.1%,+0.3%], compared with the

unadjusted estimate of +1.2%.35 There is thus not a large selection bias in the unadjusted mortality

measure, but it is possible that it has the wrong sign — the unadjusted estimate is positive but

the bounds on mortality in the bottom 64% include negative values.

Panels C and D present analogous results for combined deaths from suicide, poisoning and liver

disease, described by Case and Deaton (2017) as “deaths of despair.” The unadjusted mortality

estimates continue to overstate the constant rank mortality changes, but the difference here is small

for two reasons. First, deaths of despair have increased substantially at all education levels, so the

bias from negative selection is smaller relative to the naive change estimates. Second, the education

gradient in deaths of despair was small in 1992; this means that a change in the bin boundaries alone

would have little impact on the observed mortality rate from these causes. Appendix Figure A2

shows the same plots, but removes the monotonicity assumption and instead imposes the curvature

restriction of C=3 suggested above. The plots are highly similar; as discussed in Section 2, when a

and b are close to bin boundaries, the bounds on µba are very robust to alternate bounding assumptions.

35This result is not directly comparable to Case and Deaton (2015, 2017), who focus on white men and women, whose
unadjusted mortality is rising more substantially among the less educated. Estimating separate bounds for different racial
groups requires additional assumptions about the relative positions of these groups in the unobserved part of the latent
education distribution. We study this problem in Novosad and Rafkin (2019). The increases in mortality for less educated
women that we identify here are lower than naive estimates, but remain striking compared with other rich countries.
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The extent of bias in naive estimates is increasing in the magnitude of the mortality-education

gradient, as well as in the magnitude of the shift in bin boundaries. Blanket assumptions about the

existence or lack of bias in unadjusted mortality differences are therefore unlikely to be useful. While

unadjusted estimates systematically overstate mortality increases for all groups because of rising

education, the bias is small for estimates of changes in men’s mortality and in deaths of despair,

but is substantial for changes in women’s total mortality. For younger ages (not shown), unadjusted

estimates in some cases have the wrong sign. The variation in bias points to the importance of

correcting for selection; our method provides a straightforward approach to do so.

5 Application: Bounds on Intergenerational Educational Mobility

The study of intergenerational mobility is another context where the conditional expectation function

of interest in many cases has an interval-censored conditioning variable.36 Studies of intergenerational

mobility typically rely upon some measure of rank in the social hierarchy which can be observed

for both parents and children (Chetty et al., 2014a; Chetty et al., 2017b). In many contexts, the

only measure of social rank available for parents is their level of education. In richer countries, this

arises for studies of mobility in eras that predate the availability of administrative income data.37 In

developing countries, matched parent-child data are considerably more rare, and educational mobility

is often the only feasible object of study.38 Interval-censored parent education data is ubiquitous in

studies of intergenerational educational mobility. Table A1 reports the number of parent education

bins used in a set of recent studies of intergenerational mobility from several rich and poor countries.

Several of the studies observe education in fewer than ten bins, the population share in the bottom

bin is often above 20%, and sometimes it is above 50%.39

36For a review of intergenerational mobility, see Solon (1999), Hertz et al. (2008), Corak (2013), Black and
Devereux (2011), and Roemer (2016).

37See, for example, Black et al. (2005), Güell et al. (2013), Card et al. (2018), and Derenoncourt (2018).
38See, for example, Wantchekon et al. (2015), Hnatkovska et al. (2013), Emran and Shilpi (2015), or Alesina

et al. (2019).
39We specifically selected a set of studies where coarse data is likely to be an important factor. Note that

internationally comparable censuses often report education in only four or five categories. While we focus on examples
with large bottom-coded groups, it is also common for a large share of the population to be in a top-coded education
bin. In one mobility study from Sweden, for example, 40% of adoptive parents were top-coded with 15 or more
years of education (Björklund et al., 2006).
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5.1 Measures of Intergenerational Educational Mobility

The first generation of studies on educational mobility focused on linear estimators of the parent-child

outcome relationship, such as the slope of the best linear approximator to the CEF of child education

rank given parent education rank, i.e., the rank-rank gradient. This measure has two important

limitations. First, it is not useful for cross-group comparison. The within-group rank-rank gradient

measures children’s outcomes against better off members of their own group; a subgroup can therefore

have a lower gradient (suggesting more mobility) in spite of having worse outcomes than other groups

at every point in the parent distribution.40 Second, the rank-rank gradient aggregates information

about mobility at the top and at the bottom of the parent distribution; it is not directly informative

about upward mobility in the bottom half of the distribution.

Because of these limitations of linear estimators, recent studies have focused on measures based

on the value of the parent-child CEF at a point in the parent distribution, termed absolute mobility

at percentile x by Chetty et al. (2014a) and denoted px. For example, Chetty et al. (2014a) focus on

p25, which describes the expected outcome of a child born to the median family in the bottom half of

the rank distribution. These CEF-based measures are informative about child outcomes at arbitrary

points in the parent rank distribution and can be meaningfully compared across population subgroups.

These measures are central to current research on intergenerational mobility, but there is no

established method for calculating such measures with education data, where parents cannot be

observed at precise education percentiles. For instance, Card et al. (2018) define upward mobility in

the 1920s as the probability that a child completes the 9th grade, conditional on having parents with

5-8 years of school, and compare this measure to they Chetty et al. (2014a) measure of p25 (based on

parent income) in the present. As these 1920s parents are in the middle of the education distribution,

the 1920s measure is something like p50=E(y|x=50). We should be cautious about comparing this

quantity with p25, as the two measures describe mobility from different parts of the parent distribution.

Alesina et al. (2019) study intergenerational mobility across Africa, defining upward mobility as

40Consider an extreme example where children in some population subgroup A all end up at the 10th percentile of
the outcome distribution with certainty. The rank-rank gradient for this group would be zero (assuming some variation
in parent outcomes), implying perfect mobility. But in fact the group would have virtually no upward mobility.
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the probability that a child attains primary school, conditional on having a parent who did not

obtain primary school. Both the x and the y variable are different in each country and time—their

measure is thus approximately capturing E(y>52|x∈ [0,76]) in Mozambique (where 76% of parents

have not completed primary and 48% of children) and E(y>18|x∈ [0,42]) in South Africa. Again,

these measures may not be directly comparable. Card et al. (2018) and Alesina et al. (2019) make

these choices because they are constrained by the bin boundaries available in the education data.

Our approach resolves this problem by making it possible to calculate E(y|x=i) for any value of i.

The World Bank’s flagship report on intergenerational mobility (Narayan and Van der Weide, 2018)

calculates transition matrices by randomly reassigning individuals to create education quantiles, which

is the same approach of Bound et al. (2015), discussed in Section 4. This may result in biased estimates

that are misleadingly precise. For example, Narayan and Van der Weide (2018) find virtually identical

outcomes for children growing up in the bottom three quartiles of the parent distribution in Ethiopia

– this result is clearly an artifact of over 80% of parents having bottom-coded education levels.

These papers point to the challenges of measuring intergenerational educational mobility in a

way that allows comparisons across subgroups, places and time. The next subsection describes our

measure of upward mobility, which permits these comparisons and also accurately represents the

uncertainty that arises from interval censored rank data.

5.2 Our Measure: Upward Interval Mobility

We propose a new measure of mobility – upward interval mobility – which we define as µ500 =E(y|x∈

[0,50]). This measure describes the mean outcome of children with parents in the bottom half of

the education distribution. This measures is a close analog of absolute upward mobility. Absolute

upward mobility – the expected outcome of a child with a parent at the median of the bottom half

of the education distribution – intuitively summarizes outcomes for those at the boundary between

the lower and middle class (defined respectively as the bottom quartile and the middle two quartiles).

Upward interval mobility captures information about outcomes for children of parents throughout

the bottom half of the parent distribution. From a policy perspective, upward interval mobility has

the advantage of incorporating information about outcomes among those below the 25th percentile
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— a subgroup that may face particularly large barriers to advancement. If the relationship between

parents’ and children’s outcomes is nonlinear, then extrapolating from absolute upward mobility

alone can yield misleading conclusions about mobility among this subgroup due to Jensen’s inequality.

If the relationship is linear, then upward interval mobility and absolute upward mobility will have

exactly the same value. Both of these measures are useful in principle. The key advantage of our

measure, as we show here, is that upward interval mobility can be bounded tightly in contexts with

severe interval censoring, while absolute upward mobility cannot.

To our knowledge, upward interval mobility is the first measure of intergenerational educational

mobility that is suitable for comparisons across subgroups, time and place. As noted above, the

rank-rank gradient is not useful for subgroup analysis. The rank-based measure p25 is suitable for

subgroup analysis but cannot be calculated precisely given coarse education data. In a single time

period, one could measure subgroup mobility by focusing on a range of the rank space that is given

in the data (as done by Card et al. (2018)), but one would then need to use different bin boundaries

in different time periods as the education distribution changes, yielding potentially biased results.

5.3 Data Sources and Definitions

The interval data problem is most stark when the education bins are very large, so we focus

our application below on measuring intergenerational mobility in India, where over 50% of older

generation parents are in a bottom-coded education bin (<2 years of education). We combine data

from two sources, including administrative data on the education of every person in India in 2012,

to obtain a representative sample of every father-son pair in India.41 The details of data construction

are described in Appendix D.2.

Appendix Table A2 shows the education transition matrices for decadal birth cohorts from 1950

to 1989 in India. We observe education for both fathers and sons in seven categories.42 Because

sons’ education levels are also reported categorically, we do not directly observe the expected child

41We are restricted to the study of fathers and sons because the data do not match daughters to parents or
children to mothers when they do not live in the same household.

42The categories are (i) less than two years of education; (ii) at least two years but no primary; (iii) primary;
(iv) middle school; (v) secondary; (vi) senior secondary; and (vii) post-secondary or higher.
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outcome in each parent education bin. In this section, we instead assign to children the midpoint

of their rank bin. We show in Appendix C that data on son wages (for which the rank distribution

is uncensored) suggests that the midpoint is a very close approximation to the true expected rank,

because the residual correlation of father education and son wages is very small once son’s education

is controlled for. Note that such an exercise is impossible for interval censoring of parent data, because

no additional data on parents is available, as is typical in studies of intergenerational mobility.43

Appendix C also provides a numerical method that generates bounds under joint censoring, which

can be used in contexts where additional data on sons is not available.

5.4 Bounding the CEF of Child Rank Given Parent Rank

Panel A of Figure 8 shows the raw data for cohorts born in the 1950s and in the 1980s. Each point plots

the midpoint of a father education rank bin against the expected child rank in that bin. The vertical

lines plot the boundary for the lowest education bin for each cohort, which corresponds to fathers with

less than two years of education. In the 1950s birth cohort (solid line), this group represents 60% of the

population; it represents 38% for the 1980s cohort (dashed line). The points in the figure suggest that

the rank-rank CEF has not changed in the bottom half of the parent distribution over this period: the

bottom point in the 1950s lies almost directly between the bottom two points in the 1980s. However,

when we estimate the canonical rank-rank gradient directly on the bin means as is the standard practice,

we find small but unambiguous mobility gains over this 30-year period: the gradient declines from 0.59

to 0.54. The graph makes clear that the decrease in the gradient is driven by changes in mobility in the

top half of the distribution. This highlights a key limitation of the rank-rank gradient: it does not distin-

guish between changes in opportunity at the top and at the bottom of the parent outcome distribution.

Alternately, if we treat the data as uncensored, such that the expected child outcome is the same

at all latent ranks within each parent bin (as in Bound et al. (2015) and Narayan and Van der Weide

(2018)), we would conclude that absolute upward mobility (p25, or the expected child outcome at

the 25th parent percentile) has unambiguously fallen from the 1950s to the 1980s. But this result

43Because parental education is often obtained by asking children, it is common to have data on many child
outcomes, but only the education level of parents, as we do here.
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would clearly be an artifact of the changing bin boundaries. Neither of these conclusions represents

the true change in mobility.44

We measure upward interval mobility following the approach laid out in Section 2. We assume

that the latent parent-child rank CEF can be described by an increasing monotonic function; this

relationship is monotonic in virtually every country (Dardanoni et al., 2012), as well across every

rank bin in every year of our data on India. We then calculate bounds on the CEF of child rank

given parent rank, and various functions of that CEF.45

Panel B of Figure 8 shows bounds on the parent-child CEFs for these birth cohorts, i.e. E(y|x=i)

calculated according to Equation 2.5; we select a curvature constraint of 0.1, which is approximately

1.5 times the maximum curvature observed in uncensored parent-child income data from the

United States, Denmark, Sweden and Norway.46 Results are shown below under different curvature

constraints and are not substantively different.

The bounds on the CEF are widest at the bottom of the distribution where interval censoring

is most severe, and are wider for the older generation with the larger bottom rank bin. The bounds

in the bottom half of the distribution are consistent with both large positive and large negative

changes in mobility, and thus uninformative. Absolute upward mobility (p25) can evidently not be

bounded informatively.47 However, we will obtain considerably tighter bounds on the interval-based

measure µba=E(y|x∈ [a,b]).

Figure 9 shows bounds on the three mobility statistics discussed for each decadal cohort: the

rank-rank gradient, absolute upward mobility (p25), and upward interval mobility (µ500 ).48 For

44Note also that the CEF is evidently non-linear, so a naive nonlinear parametric fit to the bin midpoints would
be biased due to Jensen’s Inequality. It also assumes away concavity at the bottom of the distribution, which is
observed in many other countries (see Appendix Figure A3).

45Our method is loosely related to Chetty et al. (2017a), who use a numerical procedure with similar constraints to
bound absolute mobility at the 25th percentile, given just the marginal distributions of children’s and parents’ incomes
and no information on the joint distribution. However, the substantive problem they solve is very different from ours.

46We selected these countries because we were able to obtain precise uncensored parent-child income rank data for
them from Chetty et al. (2014b), Boserup et al. (2014) and Bratberg et al. (2015). Graphs for the spline estimations
used to calculate the curvature constraints are displayed in Appendix Figure A3.

47Note that a more restrictive curvature constraint would narrow the bounds, but at the expense of imposing
excessive structure that would rule out plausible CEFs, especially given the evident nonlinearity in the data.

48The bounds on the rank-rank gradient describe the slopes of the set of best linear approximators to feasible CEFs.
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reference, we plot recent estimates of similar mobility measures from USA and Denmark.49,50 Both

the rank-rank gradient and absolute upward mobility have wide and minimally informative bounds.

In contrast, upward interval mobility is estimated with tight bounds in all periods. We can now see

that upward mobility has changed very little over the four decades studied; our new measure is the

only one that produces a result consistent with what seems evident from the population moments.

There is a small gain in upward mobility from the 1950s to the 1960s, followed by a small decline

from the 1960s to the 1980s. On average, Indian mobility in all periods is as far below that in the

United States as mobility in the United States is below Denmark. Table 3 reports the bounds for

each measure and cohort with bootstrap confidence sets under a range of curvature restrictions.

Moderate curvature restrictions generate substantial improvements on the estimation of the value of

the CEF (e.g., p25), but are considerably less important for the interval measures (e.g., µ500 ), which

are tightly bounded even with unconstrained curvature.

In conclusion, the most widely used mobility estimator, the rank-rank gradient, presents an

incomplete and potentially biased picture of intergenerational educational mobility. Upward interval

mobility, in contrast, yields informative estimates even without a curvature constraint. Our method

thus makes it possible to study upward mobility in the lower-ranked parts of the distribution even

in a context with extreme interval censoring. The advantage of upward interval mobility is likely to

be replicated in mobility studies in the many other countries where the coarseness of the education

distribution makes it challenging to estimate intergenerational educational mobility.

6 Conclusion

Interval data are ubiquitous in economic research. We have shown in this paper that the shortcuts

taken by applied researchers to transform data intervals to points often rely on strong implicit

assumptions that may not be desirable. We have further shown that many parameters of interest,

49Rank-rank correlations of education are from Hertz et al. (2008), which are equal to the slope of the rank-rank
regression coefficient if estimated on uncensored rank data. For absolute mobility, we calculate p25 for the U.S.
and Denmark from the income distributions shown in Figure A3, with data from Chetty et al. (2014a). Estimates
of µ500 are very similar to p25 for these countries, further supporting our claim that it is an equally policy-relevant
parameter. We do not show µ500 for legibility.

50We calculate and show bootstrap confidence sets using 1,000 bootstrap samples from the underlying datasets,
following methods described in Imbens and Manski (2004) and Tamer (2010).
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but by no means all, can be tightly bounded even when interval data are severe. Useful inference

requires careful consideration of which parameters can and cannot be bounded meaningfully.

Our proposed methods are particularly relevant to studies describing characteristics of subpop-

ulations defined by their education, which cover areas as broad as employment, health, marriage

and fertility. All of these studies must contend with the fact that a population defined by a level

of education represents a different subset of the education rank distribution at different points

in time. This problem is typically dealt with in an ad-hoc fashion that we argue is ultimately

unsatisfactory. Our paper provides a clear and tractable framework for the analysis and resolution

of this problem and demonstrates its value in the two substantively different domains of mortality

and intergenerational mobility. Our proposed measure of intergenerational educational mobility

has broad applicability as the first such measure that can track mobility outcomes for population

subgroups in a manner that is comparable across place and time.

Future work could explore bounds on CEFs with multiple conditioning variables. We focus on a

bivariate setting because: (i) it permits intuitive graphical analysis, (ii) many prominent descriptive

applications study a bivariate setting, so we believe this method will be most immediately useful

in that context. It is trivial to extend the method to the case with additional non-interval censored

discrete conditioning variables; one simply bounds segmented CEFs for each value of the conditioning

variables, as we do in Figure 7, which presents bounds on mortality vs. education rank for men and

women separately. Cases with continuous conditioning data or multiple interval censored conditioning

variables would be valuable extensions.

A useful thought experiment when working with interval data is to explore how estimates are affected

as intervals become more or less granular. The bounds presented in this paper become wider when the

data become more coarse, as should be expected given that information has been removed. In contrast,

with conventional point estimation approaches, the use of coarser intervals can lead to different point

estimates and even increases in precision, thus obscuring the loss of information to the researcher.

Like many partial identification methods, the key advantage of our approach is that it is transparent

about what is known and what is not known, and how results depend upon the assumptions about
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the CEF in question. Our code posted online makes this tool directly available to researchers.

The use of structural assumptions to tighten bounds is a staple of partial identification analysis. We

have shown in this paper that a very limited set of assumptions can generate substantial new informa-

tion, solving recognized problems in the study of mortality and of intergenerational mobility. While

our applications have focused on estimating outcomes that condition on education, there is a huge

range of domains where our approach is applicable. Interval data are found in incomes, Likert scales,

bond ratings and a wide range of other domains. The innovations described here have the potential to

generate findings in some of these other areas even when the degree of interval censoring is extreme.
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Figure 1
Women’s Total Mortality by Education Group,

Age 50-54, 1992-2015
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Figure 1 plots mortality rates vs. mean education rank for three groups: women with less than or equal to a high
school degree, women with some college education, and women with a BA or more. Each point represents a mortality
rate (in deaths per 100,000) within a year and education group. The lighter colored points correspond to later years.
Ranks are calculated within gender and year.
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Figure 2
Candidate Functions for Conditional Expectation of Mortality

given Education Rank

Figure 2 shows two candidate conditional expectation functions of mortality given education rank for women aged
50–54 in the United States in 2015. The vertical lines show the bin boundaries and the points show mean mortality
and mean child rank in each bin.
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Figure 3
Analytical Bounds on the CEF of Mortality given Education Rank

Figure 3 shows bounds on the conditional expectation of mortality given education rank for women aged 50–54 in the
United States in 2015. The vertical lines show the bin boundaries and the points show the mean total mortality and
child rank in each bin. The dashed lines show analytical bounds when the distribution of the x variable is unknown
(Manski and Tamer, 2002). The solid line shows analytical bounds when the distribution of the x variable is uniform.
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Figure 4
CEF of Mortality given Education Rank:

Bounds Under Different Constraint Assumptions

Panel A: Monotonicity Only (C=∞) Panel B: Curvature Only (C∈{2,3,5})

Panel C: Monotonicity and Curvature (C∈{2,3,5}) Panel D: Linear Fit (C=0)

Figure 4 presents bounds on conditional expectation functions of mortality given education ranks for women aged
50–54 in 2015 under different assumptions sets. Education rank is measured relative to the set of all women aged 50-54.
The lines in each panel represent the upper and lower bounds on the CEF at each rank, obtained under different
monotonicity or curvature restrictions. Panel A imposes monotonicity only. Panel B imposes curvature constraints
only, with the solid, dashed and dotted lines respectively showing bounds with C=2, C=3 and C=5. Panel C
imposes monotonicity and curvature constraints, with the same limits as Panel B. Panel D imposes linearity, by setting
C to zero. The points show the mean mortality and education rank of women in each bin in the education distribution.
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Figure 5
Simulated Interval Censoring and Bounds using U.S. Mortality-Income Data

Panel A: C=∞ Panel B: C=20

Panel C: C=3 Panel D: C=1

Figure 5 shows results from a simulation using matched mortality-income rank data from Chetty et al. (2016) in
2014 for women aged 52. We simulated interval censoring along the bin boundaries from the 2014 education-mortality
data, so that the only observable data were the points in the graphs, which show mean mortality and education
rank in each education bin. We then calculated bounds under four different curvature constraints, indicated in
the graph titles. The solid lines show the upper and lower bound of the CEF at each point in the parent distribution,
and the dashed line shows the spline fit to the underlying data (described in Figure A1).
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Figure 6
Change in Total Mortality of U.S. Women, Age 50-54

Bounds on Conditional Expectation Functions

Panel A: Monotonicity Only

Panel B: Monotonicity and C=3

Figure 6 shows bounds on the conditional expectation function of mortality as a function of latent educational rank. The
sample consists of U.S. women aged 50-54; mortality is measured in deaths per 100,000 women. The points in the graph
show the mean education rank and mortality in each year for individuals with (i) less than or equal to high school educa-
tion; (ii) some college; and (iii) a B.A. or higher. The curves show the bounds on the expected mortality at each latent
parent rank (pi=E(Y |X=i) in the text). Panel A shows analytical bounds with no curvature constraint. Panel B uses
the curvature constraint suggested in Section 2. Education rank is measured relative to the set of all women aged 50-54.
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Figure 7
Changes in U.S. Mortality, Age 50-54, 1992-2015:

Constant Rank Interval Estimates (High School or Less in 1992)

Panel A: Women (Total Mortality) Panel B: Men (Total Mortality)
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Panel C: Women (Deaths of Despair) Panel D: Men (Deaths of Despair)
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Figure 7 shows bounds on mortality change for less educated men and women aged 50–54 over time, as well unadjusted
estimates. The points show the total mortality of men and women with high school education or less (LEHS), from
1992–2015. The vertical lines show the bounds on mortality for the group of men or women who occupy a constant set
of ranks corresponding to the ranks of men and women with LEHS in 1992. For women, these are ranks 0-64, and for
men they are ranks 0-54. Panel A shows estimates for women age 50-54, and Panel B for men. Panels C and D show
analogous plots for mortality deaths of despair for both groups, defined as deaths from suicide, poisoning or chronic liver
disease. All bounds are calculated analytically under the assumptions of monotonicity and unconstrained curvature.
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Figure 8
Changes in Intergenerational Educational Mobility in India

from 1950s to 1980s Birth Cohorts

Panel A: Rank Bin Midpoints

Panel B: CEF Bounds

Figure 8 presents the change over time in the rank-rank relationship between Indian fathers and sons born in the
1950s and the 1980s. Panel A presents the raw bin means in the data. The vertical lines indicate the size of the lowest
parent education rank bin, representing fathers with less than two years of education; the solid line shows this value
for the 1950s cohort, and the dashed line for the 1980s cohort. Panel B presents the bounds on the CEF of child rank
at each parent rank, under the curvature constraint C=0.10.
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Figure 9
Mobility Bounds for 1950s to 1980s Birth Cohorts

Panel A: Rank-Rank Gradient

Panel B: Absolute and Interval Mobility: p25 and µ500

Figure 9 shows bounds on three mobility statistics, estimated on four decades of matched Indian father-son pairs. The
solid lines show the estimated bounds on each statistic and the gray dashed lines show the 95% bootstrap confidence
sets, based on 1000 bootstrap samples. Each of these statistics was calculated using monotonicity and the curvature
constraint C=0.10. For reference, we display the rank-rank education gradient for USA and Denmark (from Hertz
et al. (2008)), and p25 for USA and Denmark (from Chetty et al. (2014a)). The rank-rank gradient is the slope
coefficient from a regression of son education rank on father education rank. p25 is absolute upward mobility, which is
the expected rank of a son born to a family at the 25th percentile. µ500 is upward interval mobility, which is the
expected rank of a son born below to a family below the 50th percentile.
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Table 1
Sample Statistics for Mortality of Less Educated Women Ages 50–54

Panel A: 1992

Statistic Monotonicity Only Curvature Only Monotonicity and Linear Fit

(C=∞) (C=3) Curvature C=3 (C=0)

p10: First Quintile Median [314.0, 1236.1] [223.8, 1008.0] [453.9, 813.9] 526.4
p25: Bottom Half Median [314.0, 683.1] [226.1, 738.7] [384.9, 585.5] 479.3
p32: Median ≤ High School (1992) [314.0, 602.4] [176.9, 694.9] [346.1, 536.3] 457.3
p19: Median ≤ High School (2015) [314.0, 799.6] [253.4, 750.3] [421.2, 642.8] 498.1

µ200 : First Quintile Mean [459.0, 775.5] [11.2, 1287.5] [467.6, 749.0] 526.4
µ500 : Bottom Half Mean [459.0, 498.6] [423.1, 565.1] [460.7, 496.2] 479.3
µ640 : Mean ≤ High School (1992) [458.2, 459.0] [459.0, 459.0] [459.0, 459.0] 457.3
µ390 : Mean ≤ High School (2015) [459.0, 550.7] [316.5, 608.4] [462.1, 544.9] 496.5

Panel B: 2015

Statistic Monotonicity Only Curvature Only Monotonicity and Linear Fit

(C=∞) (C=3) Curvature C=3 (C=0)

p10: First Quintile Median [335.1, 1313.5] [473.4, 899.1] [577.2, 846.8] 640.8
p25: Bottom Half Median [335.1, 726.7] [345.3, 718.2] [376.9, 628.8] 542.6
p32: Median ≤ High School (1992) [335.1, 641.1] [260.5, 721.5] [345.3, 593.8] 496.7
p19: Median ≤ High School (2015) [335.1, 850.3] [434.0, 746.4] [464.5, 672.8] 581.9

µ200 : First Quintile Mean [587.7, 824.8] [326.5, 956.9] [590.0, 806.9] 640.8
µ500 : Bottom Half Mean [531.0, 587.7] [523.1, 576.9] [534.1, 567.5] 542.6
µ640 : Mean ≤ High School (1992) [488.2, 497.3] [488.4, 498.4] [490.2, 498.0] 496.7
µ390 : Mean ≤ High School (2015) [586.3, 587.7] [587.5, 587.5] [587.5, 587.5] 578.6

Table 1 presents bounds on various mortality statistics under different constraints. The last column in each panel presents point estimates obtained from the
best linear approximation to the mean mortality observed in each bin. px is the value of the CEF at x; µba is the average value of the CEF between points
a and b. Panel A presents statistics for women in 1992, and Panel B for 2015.
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Table 2
Simulation Results:

Mortality at Different Income Ranks (Deaths / 100,000)

Value from
Statistic Linear Fit True Value C=∞
p10: First Quintile Median 393.4 444.9 [213.7,797.3]
p25: Bottom Half Median 337.1 272.3 [213.7,447.1]
p32: Median ≤ High School (1992) 310.8 251.0 [213.7,396.1]
p19: Median ≤ High School (2015) 359.6 315.4 [213.7,520.9]
µ200 : First Quintile Mean 393.4 456.7 [361.4,505.5]
µ500 : Bottom Half Mean 337.1 335.3 [330.4,361.4]
µ640 : Mean ≤ High School (1992) 310.8 307.6 [304.9,312.5]
µ390 : Mean ≤ High School (2015) 357.7 361.4 [361.4,363.3]

C=3
[352.6,519.5]
[285.6,393.7]
[236.3,367.3]
[323.8,429.5]
[362.2,500.1]
[332.2,353.7]
[306.4,311.7]
[361.9,364.9]

Table 2 presents bounds on mortality statistics computed in a simulation exercise. We begin with mortality-income
rank data on women aged 52 in 2014 from Chetty et al. (2016) and compute the best-fit spline to the data to obtain a
close estimate of the true CEF for this distribution. We then simulate interval censoring according to the education
bins for women aged 50–54 in 2014 used elsewhere in the paper. We then compute bounds on mortality statistics
obtained data with simulated censoring. px is the value of the CEF at x; µba is the average value of the CEF between
points a and b.
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Table 3
Bounds on Intergenerational Educational Mobility in India

C=∞ C=0.20
Cohort Gradient p25 µ500 Gradient p25 µ500
1950-59 [0.457, 0.742] [13.0, 58.3] [34.8, 38.7] [0.474, 0.722] [25.5, 48.1] [34.8, 37.9]

(0.447, 0.763) (10.2, 59.8) (34.0, 39.0) (0.464, 0.745) (24.2, 48.3) (34.0, 38.4)
1960-69 [0.436, 0.655] [22.2, 54.5] [37.0, 39.1] [0.444, 0.639] [29.3, 49.3] [37.0, 38.8]

(0.421, 0.677) (19.7, 54.8) (36.3, 39.5) (0.429, 0.661) (28.0, 49.5) (36.3, 39.3)
1970-79 [0.463, 0.595] [29.0, 48.6] [37.8, 37.8] [0.468, 0.584] [32.2, 48.3] [37.8, 37.8]

(0.455, 0.616) (26.8, 49.7) (37.3, 38.0) (0.461, 0.603) (31.9, 49.1) (37.3, 38.0)
1980-89 [0.500, 0.565] [32.3, 42.3] [36.8, 36.8] [0.505, 0.556] [33.3, 42.8] [36.8, 36.8]

(0.488, 0.591) (30.2, 43.6) (36.4, 37.3) (0.492, 0.582) (32.8, 43.6) (36.4, 37.3)

C=0.10 C=0
Cohort Gradient p25 µ500 Gradient p25 µ500
1950-59 [0.492, 0.702] [28.4, 44.9] [34.9, 37.1] 0.587 35.6 35.6

(0.480, 0.727) (27.2, 45.3) (34.0, 37.8) (0.577, 0.595) (35.4, 35.9) (35.4, 35.9)
1960-69 [0.452, 0.629] [31.2, 46.3] [37.0, 38.5] 0.538 36.8 36.8

(0.436, 0.629) (31.1, 46.5) (36.9, 38.9) (0.530, 0.553) (36.5, 37.0) (36.5, 37.0)
1970-79 [0.472, 0.577] [33.4, 46.2] [37.8, 37.8] 0.534 36.9 36.9

(0.465, 0.597) (32.7, 46.5) (37.3, 38.0) (0.524, 0.549) (36.6, 37.2) (36.6, 37.2)
1980-89 [0.506, 0.548] [33.8, 42.4] [36.8, 36.8] 0.537 36.8 36.8

(0.494, 0.575) (33.3, 43.1) (36.3, 37.3) (0.523, 0.551) (36.5, 37.2) (36.5, 37.2)

The table shows estimates of bounds on three scalar mobility statistics, for different decadal cohorts and under
different restrictions C on the curvature of the child rank conditional expectation function given parent rank. The
rank-rank gradient is the slope coefficient from a regression of son education rank on father education rank. p25 is
absolute upward mobility, which is the expected rank of a son born to a family at the 25th percentile. µ500 is upward
interval mobility, which is the expected rank of a son born below to a family below the 50th percentile. When C=0,
the bounds shrink to point estimates. Bootstrap 95% confidence sets are displayed in parentheses below each estimate
based on 1000 bootstrap samples.
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A Appendix A: Additional Tables and Figures

Figure A1
Spline Approximations to the Empirical Mortality-Income CEF

52-Year-Old Women in 2014
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Figure A1 presents estimates of the conditional expectation function of U.S. mortality given income rank, using
data from Chetty et al. (2016). The CEF is fitted using a four-knot cubic spline. The function plots the best cubic
spline fit to the data series, and the circles plot the underlying data. The text under the graph shows the range
of the second derivative across the support of the function.
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Figure A2
Changes in U.S. Mortality, Age 50-54, 1992-2015:

Constant Rank Interval Estimates (High School or Less in 1992)
Curvature Constraint Only

Panel A: Women (Total Mortality) Panel B: Men (Total Mortality)
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Panel C: Women (Deaths of Despair) Panel D: Men (Deaths of Despair)
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Figure A2 shows bounds on estimates of mortality for men and women aged 50–54 over time. The figure is similar to
Figure 7, but the bounds here are generated under the assumption of a curvature constraint (C=3) but without the
requirement of monotonicity. In contrast, Figure 7 calculates bounds under the assumption of a monotonic CEF with no
curvature constraint. The sample is defined by the set of latent education ranks corresponding to a high school education
or less in 1992, or ranks 0-64 for women and 0-54 for men. Panel A shows total mortality for women age 50–54, and
Panel B shows total mortality for men age 50–54. Panels C and D show mortality from deaths of despair for both groups.
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Figure A3
Spline Approximations to Empirical Parent-Child Rank Distributions

Panel A: U.S.A. Panel B: Denmark

20

30

40

50

60

70

S
on

 r
an

k

0 10 20 30 40 50 60 70 80 90 100
Father Rank

2nd derivative in [−.009,.017]

Cubic spline, 4 knots

20

30

40

50

60

70

S
on

 r
an

k

0 10 20 30 40 50 60 70 80 90 100
Father Rank

2nd derivative in [−.026,.028]

Cubic spline, 4 knots

Panel C: Sweden Panel D: Norway
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Figure A3 presents estimates of the conditional expectation functions obtained from fully supported parent-child
rank-rank income distribution in several developed countries. The data for U.S.A. and Denmark come from Chetty
et al. (2014a), who obtained the Denmark data from Boserup et al. (2014). The data for Sweden and Norway come
from Bratberg et al. (2015). The CEFs were fitted using cubic splines, with knots at 20, 40, 60, and 80 (as indicated
by the vertical lines). The functions plot the best cubic spline fit to each series, and the circles plot the underlying
data. The text under each graph shows the range of the second derivative across the support of the function.
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Table A1
Bin Sizes in Studies of Intergenerational Mobility

Study Country Birth Cohort Number of Parent Population Share in
of Son Outcome Bins Largest Bin

Aydemir and Yazici (2016) Turkey 199051 15 39%
Turkey 196052 15 78%

Dunn (2007) Brazil 1972–1981 > 18 20%53

Emran and Shilpi (2011) Nepal, Vietnam 1992-1995 2 83%
Güell et al. (2013) Spain ∼ 2001 9 27%54

Guest et al. (1989) USA ∼ 1880 7 53.2%
Hnatkovska et al. (2013) India 1918-1988 5 Not reported
Knight et al. (2011) China 1930–1984 5 29%55

Lindahl et al. (2012) Sweden 1865-2005 8 34.5%
Long and Ferrie (2013) Britain ∼ 1850 4 57.6%

Britain ∼ 1949-55 4 54.2%
USA ∼ 1850-51 4 50.9%
USA ∼ 1949-55 4 48.3%

Piraino (2015) South Africa 1964–1994 6 36%

Table A1 presents a review of papers analyzing educational and occupational mobility. The sample is not representa-
tive: we focus on papers where interval censoring may be a concern. The column indicating number of parent outcome
bins refers to the number of categories for the parent outcome used in the main specification. The outcome is education
in all studies with the exception of Long and Ferrie (2013) and Guest et al. (1989), where the outcome is occupation.

52Includes all people born after about 1990.
53Includes all people born after about 1960.
54This is the proportion of sons in 1976 who had not completed one year of education — an estimate of the

proportion of fathers in 2002 with no education, which is not reported.
55Estimate is from the full population rather than just fathers.
56This reported estimate does not incorporate sampling weights; estimates with weights are not reported.
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Table A2
Transition Matrices for Father and Son Education in India

A: Sons Born 1950-59

Son highest education attained
< 2 yrs. 2-4 yrs. Primary Middle Sec. Sr. sec. Any higher

Father ed attained (31%) (11%) (17%) (13%) (13%) (6%) (8%)
<2 yrs. (60%) 0.47 0.12 0.17 0.11 0.09 0.03 0.03
2-4 yrs. (12%) 0.10 0.18 0.22 0.19 0.16 0.09 0.06
Primary (13%) 0.07 0.08 0.31 0.16 0.19 0.08 0.10
Middle (6%) 0.06 0.05 0.09 0.30 0.17 0.14 0.18

Secondary (5%) 0.03 0.02 0.04 0.12 0.37 0.11 0.30
Sr. secondary (2%) 0.02 0.00 0.03 0.11 0.11 0.35 0.38
Any higher ed (2%) 0.01 0.01 0.01 0.03 0.08 0.13 0.72

B: Sons Born 1960-69

Son highest education attained
< 2 yrs. 2-4 yrs. Primary Middle Sec. Sr. sec. Any higher

Father ed attained (27%) (10%) (16%) (16%) (14%) (7%) (10%)
<2 yrs. (57%) 0.41 0.12 0.16 0.14 0.09 0.04 0.04
2-4 yrs. (13%) 0.12 0.17 0.18 0.22 0.15 0.08 0.08
Primary (14%) 0.09 0.05 0.26 0.18 0.20 0.09 0.13
Middle (6%) 0.06 0.04 0.09 0.29 0.21 0.13 0.19

Secondary (6%) 0.03 0.02 0.08 0.12 0.35 0.16 0.25
Sr. secondary (2%) 0.02 0.02 0.03 0.07 0.19 0.25 0.41
Any higher ed (2%) 0.01 0.01 0.02 0.03 0.09 0.11 0.73

C: Sons Born 1970-79

Son highest education attained
< 2 yrs. 2-4 yrs. Primary Middle Sec. Sr. sec. Any higher

Father ed attained (20%) (8%) (17%) (18%) (16%) (10%) (12%)
<2 yrs. (50%) 0.33 0.10 0.19 0.17 0.12 0.05 0.04
2-4 yrs. (11%) 0.11 0.16 0.20 0.22 0.15 0.08 0.08
Primary (15%) 0.08 0.06 0.24 0.23 0.18 0.11 0.11
Middle (8%) 0.05 0.03 0.09 0.29 0.21 0.17 0.16

Secondary (9%) 0.03 0.02 0.06 0.12 0.31 0.19 0.27
Sr. secondary (3%) 0.01 0.01 0.02 0.08 0.17 0.29 0.42
Any higher ed (4%) 0.00 0.00 0.02 0.05 0.10 0.17 0.66

D: Sons Born 1980-89

Son highest education attained
< 2 yrs. 2-4 yrs. Primary Middle Sec. Sr. sec. Any higher

Father ed attained (12%) (7%) (16%) (20%) (16%) (12%) (17%)
<2 yrs. (38%) 0.26 0.10 0.21 0.20 0.12 0.06 0.05
2-4 yrs. (11%) 0.08 0.17 0.19 0.24 0.15 0.09 0.08
Primary (17%) 0.05 0.04 0.22 0.23 0.20 0.13 0.13
Middle (12%) 0.03 0.02 0.10 0.28 0.20 0.17 0.20

Secondary (11%) 0.02 0.01 0.05 0.13 0.23 0.24 0.32
Sr. secondary (5%) 0.02 0.01 0.04 0.09 0.15 0.24 0.46
Any higher ed (5%) 0.01 0.01 0.02 0.05 0.10 0.16 0.65

Table A2 shows transition matrices by decadal birth cohort for Indian fathers and sons in the study.
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B Appendix B: Proofs

Proof of Proposition 1.
Let the function Y (x)=E(y|x) be defined on a known interval; without loss of generality, define this interval

as x∈ [0,100]. Assume Y (x) is integrable. We want to bound E(y|x) when x is known to lie in the interval [xk,xk+1];
there are K such intervals. Define the expected value of y in bin k as

rk=

∫ xk+1

xk

Y (x)fk(x)dx.

Note that
rk=E(y|x∈ [xk,xk+1])

via the law of iterated expectations. Define r0=0 and rK+1=100.
Restate the following assumptions from Manski and Tamer (2002):

P(x∈ [xk,xk+1])=1. (Assumption I)

E(y|x) must be weakly increasing in x. (Assumption M)

E(y|x is interval censored)=E(y|x). (Assumption MI)

From Manski and Tamer (2002), we have:

rk−1≤E(y|x)≤rk+1 (Manski-Tamer bounds)

Suppose also that
x∼U(0,100). (Assumption U)

In that case,

rk=
1

xk+1−xk

∫ xk+1

xk

Y (x)dx,

substituting the probability distribution function for the uniform distribution within bin k. Then we derive the
following proposition.

Proposition 1. Let x be in bin k. Under assumptions M, I, MI (Manski and Tamer, 2002) and U, and without
additional information, the following bounds on E(y|x) are sharp:{

rk−1≤E(y|x)≤ 1
xk+1−x((xk+1−xk)rk−(x−xk)rk−1), x<x∗k

1
x−xk ((xk+1−xk)rk−(xk+1−x)rk+1)≤E(y|x)≤rk+1, x≥x∗k

where

x∗k=
xk+1rk+1−(xk+1−xk)rk−xkrk−1

rk+1−rk−1
.

The intuition behind the proof is as follows. First, find the function z which meets the bin mean and is defined as
rk−1 up to some point j. Because z is a valid CEF, the lower bound on E(y|x) is no larger than z up to j; we then show
that j is precisely x∗k from the statement. For points x>x∗k, we show that the CEF which minimizes the value at point x
must be a horizontal line up to x and a horizontal line at rk+1 for points larger than x. But there is only one such CEF,
given that the CEF must also meet the bin mean, and we can solve analytically for the minimum value the CEF can
attain at point x. We focus on lower bounds for brevity, but the proof for upper bounds follows a symmetric structure.

Part 1: Find x∗k. First define Vk as the set of weakly increasing CEFs which meet the bin mean. Put otherwise,
let Vk be the set of v : [xk,xk+1]→R satisfying

rk=
1

xk+1−xk

∫ xk+1

xk

v(x)dx.
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Now choose z∈Vk such that

z(x)=

{
rk−1, xk≤x<j
rk+1, j≤x≤xk+1.

Note that z and j both exist and are unique (it suffices to show that just j exists and is unique, as then z must
be also). We can solve for j by noting that z lies in Vk, so it must meet the bin mean. Hence, by evaluating the
integrals, j must satisfy:

rk=
1

xk+1−xk

∫ xk+1

xk

z(x)dx

=
1

xk+1−xk

(∫ j

xk

rk−1dx+

∫ xk+1

j

rk+1dx

)
=

1

xk+1−xk
((j−xk)rk−1+(xk+1−j)rk+1).

Note that these expressions invoke assumption U, as the integration of z(x) does not require any adjustment for
the density on the x axis. For a more general proof with an arbitrary distribution of x, see section B.

With some algebraic manipulations, we obtain that j=x∗k.
Part 2: Prove the bounds. In the next step, we show that x∗k is the smallest point at which no v∈Vk can be rk−1,

which means that there must be some larger lower bound on E(y|x) for x≥x∗k. In other words, we prove that

x∗k=sup
{
x| there exists v∈Vk such that v(x)=rk−1.

}
.

We must show that x∗k is an upper bound and that it is the least upper bound.
First, x∗k is an upper bound. Suppose that there exists j′>x∗k such that for some w∈Vk, w(j′)=rk−1. Observe

that by monotonicity and the bounds from Manski and Tamer (2002), w(x)=rk+1 for x≤j′; in other words, if w(j′)
is the mean of the mean of the prior bin, it can be no lower or higher than the mean of the prior bin up to point
j′. But since j′>j, this means that ∫ j′

xk

w(x)dx<

∫ j′

xk

z(x)dx,

since z(x)>w(x) for all h∈(j,j′). But recall that both z and w lie in Vk and must therefore meet the bin mean; i.e.,∫ xk+1

xk

w(x)dx=

∫ xk+1

xk

z(x)dx.

But then ∫ xk+1

j′
w(x)dx>

∫ xk+1

j′
z(x)dx.

That is impossible by the bounds from Manski and Tamer (2002), since w(x) cannot exceed rk+1, which is precisely
the value of z(x) for x≥j.

Second, j is the least upper bound. Fix j′<j. From the definition of z, we have shown that for some h∈(j′,j),
z(h)=rk−1 (and z∈Vk). So any point j′ less than j would not be a lower bound on the set — there is a point
h larger than j′ such that z(h)=rk−1.

Hence, for all x<x∗k, there exists a function v∈Vk such that v(x)=rk−1; the lower bound on E(y|x) for x<x∗k
is no greater than rk−1. By choosing z′ with

z′(x)=

{
rk−1, xk≤x≤j
rk+1, j<x≤xk+1,

it is also clear that at x∗k, the lower bound is no larger than rk−1 (and this holds in the proposition itself, substituting
in x∗k into the lower bound in the second equation).

Now, fix x′∈(x∗k,xk+1]. Since x∗k is the supremum, there is no function v∈Vk such that v(x′)=rk−1. Thus for
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x′>x∗k, we seek a sharp lower bound larger than rk−1. Write this lower bound as

Yminx′ =min
{
v(x′) for all v∈Vk

}
,

where Yminx′ is the smallest value attained by any function v∈Vk at the point x′.
We find this Yminx′ by choosing the function which maximizes every point after x′, by attaining the value of the

subsequent bin. The function which minimizes v(x′) must be a horizontal line up to this point.
Pick z̃∈Vk such that

z̃(x)=

{
Y , xk≤x′

rk+1, x′<xk+1≤xk+1

.

By integrating z̃(x), we claim that Y satisfies the following:

1

xk+1−xk
((x′−xk)Y +(xk+1−x′)rk+1)=rk.

As a result, Y from this expression exists and is unique, because we can solve the equation. Note that this integration
step also requires that the distribution of x be uniform, and we generalize this argument in B.

By similar reasoning as above, there is no Y ′<Y such that there exists w ∈Vk with w(x′) = Y ′. Otherwise
there must be some point x>x′ such that w(x′)>rk+1 in order that w matches the bin means and lies in Vk; the
expression for Y above maximizes every point after x′, leaving no additional room to further depress Y .

Formally, suppose there exists w∈Vk such that w(x′) =Y ′<Y . Then w(x′)< z̃(x′) for all x<x′, since w is
monotonic. As a result, ∫ x′

xk

z̃(x)dx>

∫ x′

xk

w(x)dx.

But recall that ∫ xk+1

xk

w(x)dx=

∫ xk+1

xk

z̃(x)dx,

so ∫ xk+1

x′
w(x)dx>

∫ xk+1

x′
z̃(x)dx.

This is impossible, since z̃(x)=rk+1 for all x>x′, and by Manski and Tamer (2002), w(x)≤rk+1 for all w∈Vk.
Hence there is no such w∈Vk, and therefore Y is smallest possible value at x′, i.e. Y =Yminx′ .

By algebraic manipulations, the expression for Y =Yminx reduces to

Yminx =
(xk+1−xk)rk−(xk+1−x)rk+1

x−xk
, x≥x∗k.

The proof for the upper bounds uses the same structure as the proof of the lower bounds.
Finally, the body of this proof gives sharpness of the bounds. For we have introduced a CEF v∈Vk that obtains

the value of the upper and lower bound for any point x∈ [xk,xk+1]. For any value y within the bounds, one can
generate a CEF v∈Vk such that v(x)=y.

Proof of Proposition 2. Suppose we relax assumption U and merely characterize x by some known probability
density function. Then we can derive the following bounds.

Proposition 2. Let x be in bin k. Let fk(x) be the probability density function of x in bin k. Under assumptions
M, I, MI (Manski and Tamer, 2002), and without additional information, the following bounds on E(y|x) are sharp:

rk−1≤E(y|x)≤
rk−rk−1

∫ x
xk
fk(s)ds∫ xk+1

x fk(s)ds
, x<x∗k

rk−rk+1

∫ xk+1
x fk(s)ds∫ x

xk
fk(s)ds

≤E(y|x)≤rk+1, x≥x∗k
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where x∗k satisfies:

rk=rk−1

∫ x∗k

xk

fk(s)ds+rk+1

∫ xk+1

x∗k

fk(s)ds.

The proof follows the same argument as in proposition 1. With an arbitrary distribution, Vk now constitutes
the functions v : [xk,xk+1]→R which satisfy: ∫ xk+1

xk

v(s)fk(s)ds=rk.

As before, choose z∈Vk such that

z(x)=

{
rk−1, xk≤x<j
rk+1, j≤x≤xk+1.

Because the distribution of x is no longer uniform, j must now satisfy

rk=

∫ xk+1

xk

z(s)fk(s)ds

=rk−1

∫ j

xk

fk(s)ds+rk+1

∫ xk+1

j

fk(s)ds.

This implies that j=x∗k, precisely.
The rest of the arguments follow identically, except we now claim that for x>x∗k, Y =Yminx satisfies the following:

rk=

∫ x

xk

Yminx fk(s)ds+

∫ xk+1

x

rk+1fk(s)ds.

By algebraic manipulations, we obtain:

Yminx =
rk−rk+1

∫ xk+1

x
fk(s)ds∫ x

xk
fk(s)ds

and the proof of the lower bounds is complete. As before, the proof for upper bounds follows from identical logic.
Proof of Proposition 3. Define

µba=
1

b−a

∫ b

a

E(y|x)di.

Let Yminx and Ymaxx be the lower and upper bounds respectively on E(y|x) given by Proposition 1. We seek to
bound µba when x is observed only in discrete intervals.

Proposition 3. Let b∈ [xk,xk+1] and a∈ [xh,xh+1] with a<b. Let assumptions M, I, MI (Manski and Tamer, 2002)
and U hold. Then, if there is no additional information available, the following bounds are sharp:

Yminb ≤µba≤Ymaxa , h=k
rh(xk−a)+Yminb (b−xk)

b−a ≤µba≤
Ymaxa (xk−a)+rk(b−xk)

b−a , h+1=k
rh(xh+1−a)+

∑k−1
λ=h+1rλ(xλ+1−xλ)+Yminb (b−xk)

b−a ≤µba≤
Ymaxa (xh+1−a)+

∑k−1
λ=h+1rλ(xλ+1−xλ)+rk(b−xk)

b−a , h+1<k.

The order of the proof is as follows. If a and b lie in the same bin, then µba is maximized only if the CEF is
minimized prior to a. As in the proof of proposition 1, that occurs when the CEF is a horizontal line at Yminx up
to a, and a horizontal line Ymaxx at and after a. If a and b lie in separate bins, the value of the integral in bins that
are contained between a and b is determined by the observed bin means. The portions of the integral that are not
determined are maximized by a similar logic, since they both lie within bins. We prove the bounds for maximizing
µba, but the proof is symmetric for minimizing µba.
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Part 1: Prove the bounds if a and b lie in the same bin. We seek to maximize µba when a,b∈ [xk,xk+1]. This

requires finding a candidate CEF v∈Vk which maximizes
∫ b
a
v(x)dx. Observe that the function v(x) defined as

v(x)=

{
Ymina , xk≤x<a
Ymaxa , a≤x≤xk+1

has the property that v∈Vk. For if a≥x∗k, v= z̃ from the second part of the proof of proposition 1. If a<x∗k, the
CEF in Vk which yields Ymaxa is precisely v (by a similar argument which delivers the upper bounds in proposition 1).

This CEF maximizes µba, because there is no w∈Vk such that

1

b−a

∫ b

a

w(x)dx>
1

b−a

∫ b

a

v(x)dx.

Note that for any w ∈ Vk, 1
xk+1−xk

∫ xk+1

xk
w(x)dx= 1

xk+1−xk

∫ xk+1

xk
v(x)dx= rk. Hence in order that

∫ b
a
w(x)dx>∫ b

a
v(x)dx, there are two options. The first option is that∫ a

xk

w(x)dx<

∫ a

xk

v(x)dx.

That is impossible, since there is no room to depress w given the value of v after a. If a<x∗k, then it is clear that
there is no w giving a larger µba, since rk−1≤w(x) for xk−1≤x≤a, so w is bounded below by v. If a≥x∗k, then
v(x)=rk+1 for all a≤x≤xk+1. That would leave no room to depress w further; if

∫ a
xk
w(x)dx<

∫ a
xk
v(x)dx, then∫ xk+1

a
w(x)dx>

∫ xk+1

a
v(x)dx, which cannot be the case if v=rk+1, by the bounds given in Manski and Tamer (2002).

The second option is that ∫ xk

b

w(x)dx<

∫ xk

b

v(x)dx.

This is impossible due to monotonicity. For if
∫ b
a
w(x)dx>

∫ b
a
v(x)dx, then there must be some point x′∈ [a,b) such

that w(x′)>v(x′). By monotonicity, w(x)>v(x) for all x∈ [x′,xk+1] since v(x)=Ymaxa in that interval. As a result,∫ xk

b

w(x)dx>

∫ xk

b

v(x)dx,

since b∈(x′,xk+1). (If b=xk+1, then only the first option would allow w to maximize the desired µba.)
Therefore, there is no such w, and v indeed maximizes the desired integral. Integrating v from a to b, we obtain

that the upper bound on µba is 1
b−a
∫ b
a
Ymaxa dx=Ymaxa . Note that there may be many functions which maximize

the integral; we only needed to show that v is one of them.
To prove the lower bound, use an analogous argument.
Part 2: Prove the bounds if a and b do not lie in the same bin. We now generalize the set up and permit a,b∈ [0,100].

Let V be the set of weakly increasing functions such that 1
xk+1−xk

∫ xk+1

xk
v(x)dx=rk for all k≤K. In other words,

V is the set of functions which match the means of every bin. Now observe that for all v∈V,

µba=
1

b−a

∫ b

a

v(x)dx

=
1

b−a

(∫ xh+1

a

v(x)dx+

∫ xk

xh+1

v(x)dx+

∫ b

xk

v(x)dx

)
,

by a simple expansion of the integral.
But for all v∈V, ∫ xk

xh+1

v(x)dx=

k−1∑
λ=h+1

rλ(xλ+1−xλ)
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if h+1<k and ∫ xk

xh+1

v(x)dx=0

if h+1=k. For in bins completely contained inside [a,b], there is no room for any function in V to vary; they all
must meet the bin means.

We proceed to prove the upper bound. We split this into two portions: we wish to maximize
∫ xh+1

a
v(x)dx and

we also wish to maximize
∫ b
xk
v(x)dx. The values of these objects are not codependent. But observe that the CEFs

v∈Vk which yield upper bounds on these integrals are the very same functions which yield upper bounds on µ
xh+1
a

and µbxk , since µts= 1
t−s
∫ t
s
v(x)dx for any s and t. Also notice that a and xh+1 both lie in bin h, while b and xk

both lie in bin k, so we can make use of the first portion of this proof.
In part 1, we showed that the function v∈V, v : [xh,xh+1]→R, which maximizes µ

xh+1
a is

v(x)=

{
Ymina , xh≤x<a
Ymaxa , a≤x≤xh+1.

As a result

max
v∈V

{∫ xh+1

a

v(x)dx

}
=

∫ xh+1

a

Ymaxa dx=Ymaxa (xh+1−a).

Similarly, observe that xk and b lie in the same bin, so the function v : [xk,xk+1]→R, with v∈V which maximizes∫ b
xk
v(x)dx must be of the form

v(x)=

{
Yminxk

, xk≤x<a
Ymaxxk

, b≤x≤xk+1.

With identical logic,

max
v∈V

{∫ b

xk

v(x)dx

}
=

∫ b

xk

Ymaxxk
dx=Ymaxxk

(b−xk).

And by proposition 1, xk≤x∗k so Ymaxxk
=rk. (Note that if xk=x∗k, substituting x∗k into the second expression of

proposition 1 still yields that Ymaxxk
=rk.)

Now we put all these portions together. First let h+1=k. Then
∫ xk
xh+1

v(x)dx=0, so we maximize µba by

1

b−a
(Ymaxa (xh+1−a)+rk(b−xk)).

Similarly, if h+1<k and there are entire bins completely contained in [a,b], then we maximize µba by

1

b−a

(
Ymaxa (xh+1−a)+

k−1∑
λ=h+1

rλ(xλ+1−xλ)+rk(b−xk)

)
.

The lower bound is proved analogously. Sharpness is immediate, since we have shown that the CEF which delivers the
endpoints of the bounds lies in V. As a result, there is a function delivering any intermediate value for the bounds.

Extension of Proposition 3 to an arbitrary known distribution

Proposition 4. Let a∈ [xh,xh+1] and b∈ [xk,xk+1]. Let assumptions M, I, MI hold. Let Yminx and Ymaxx be the
lower and upper bounds respectively on E(y|x) given by proposition 2. Let the probability distribution of x be f(x).
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Then, if no additional information is available, the following bounds are sharp:

Yminb ≤µba≤Ymaxa h=k
rh

∫ xk
a
f(x)dx+Yminb

∫ b
xk
f(x)dx∫ b

a
f(x)dx

≤µba≤
Ymaxa

∫ xk
a
f(x)dx+rk

∫ b
xk
f(x)dx∫ b

a
f(x)dx

h+1=k

rh
∫ xh+1
a f(x)dx+

∑k−1
λ=h+1rλ

∫ xλ+1
xλ

f(x)dx+Yminb

∫ b
xk
f(x)dx∫ b

a
f(x)dx

≤µba

≤
Ymaxa

∫ xh+1
a f(x)dx+

∑k−1
λ=h+1rλ

∫ xλ+1
xλ

f(x)dx+rk
∫ b
xk
f(x)dx∫ b

a
f(x)dx

h+1<k.

Proposition 4 generalizes proposition 3 to an arbitrary distribution, but its proof is identical. The only difference
is in the weight given to components of µba that lie in different bins; these weights are given by integrating the
maximizing function v∈V, while accounting for the probability distribution f(x).

We consider only maximizing µba. To prove the first part of proposition 4, we obtain v∈V defined as

v(x)=

{
Ymina , xk≤x<a
Ymaxa , a≤x≤xk+1.

As before, µba given by
∫ b
a
v(x)f(x)dx∫ b
a
f(x)dx

will maximize µba.

If the first part of the proposition holds, then the rest follows. For h 6=k, then

µba=
1∫ b

a
f(x)dx

∫ b

a

v(x)f(x)dx

=
1∫ b

a
f(x)dx

(∫ xh+1

a

v(x)f(x)dx+

∫ xk

xh+1

v(x)f(x)dx+

∫ b

xk

v(x)f(x)dx

)
,

As before,
∫ xk
xh+1

v(x)f(x)dx=0 if h+1=k. If h+1<k, then∫ xk

xh+1

v(x)f(x)dx=

k−1∑
λ=h+1

rλ

∫ xλ+1

xλ

f(x)dx.

We maximize the objects
∫ xh+1

a
v(x)f(x)dx and

∫ b
xk
v(x)f(x)dx by using the expression from the first part of this

proof. We therefore have that the maximum of
∫ xh+1

a
v(x)f(x)dx over v∈V is obtained by Ymaxa

∫ xh+1

a
f(x)dx. By

the same argument, we maximize
∫ b
xk
v(x)f(x)dx with rk

∫ b
xk
f(x)dx. Putting these expressions together, the proof

is complete.
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C Appendix C: CEF Bounds When x and y are Interval-Censored

In the main part of the paper, we focus on bounding a function Y (x)=E(y|x) when y is observed without error, but

x is observed with interval censoring. In this section, we modify the setup to consider simultaneous interval censoring

in the conditioning variable x and in observed outcomes y. This arises, for example, in the study of educational

mobility, where latent education ranks of both parents and children are observed with interval censoring.

We first present a setup that takes a similar approach to the bounding method presented in Section 2. We can

define bounds on the CEF E(y|x) when both y and x are interval-censored as a solution to a constrained optimization

problem. The number of parameters is an order of magnitude higher than the problem in Section 2, and proved too

computationally intensive to solve in the Indian test case (where interval censoring is severe). We therefore present a

sequential approach that yields theoretical bounds on the double-censored CEF for the case of intergenerational mobility.

Specifically, we define the theoretical best- and worst-case latent distributions of y variables for a given intergen-

erational mobility statistic. The best- and worst-case assumptions each generate a bound on the feasible value of y for

each x bin. We then use the method in Section 2 to calculate bounds on the mobility statistic under each case. The

union of these bounds is a conservative bound on the mobility statistic given censoring in both the y and x variables.

Finally, we can shed light on the distribution of the true value of y in each x bin if other data is available. In

the context of intergenerational mobility, and in our specific empirical context, it is frequently the case that more

information is available about children than about their parents. We use data on child wages to predict whether the

true latent child rank distribution (y) is better represented by the best- or worst-case mobility scenario. The joint wage

distribution suggests that the true latent distribution of y in each bin is very close to the best case distribution, which we

used in Section 5, because there is little effect of parent education on child wages after conditioning on child education.

C.1 Solution Definition for CEF Bounds with Double Censoring

We are interested in bounding a function E(y|x), where y is known only to lie in one of H bins defined by intervals

of the form [yh,yh+1], and x is known only to lie in one of K bins defined by intervals of the form [xk,xk+1]. For

simplicity, we focus on the case where both y and x are uniformly distributed on the interval [0,100].57

Where Section 2 focused on bounding the cumulative expectation function (CEF) of y given x, we focus here

on bounding a separate conditional distribution function (CDF) for y, given each value of x. Each value of x implies

a different CDF for y, as follows:

F(r,x)=P(y≤r|x=X) (C.1)

57Taking a different known distribution into account would require imposing different weights on the mean-squared
error function and budget constraint below, but would otherwise not be substantively different.
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This CDF is related to the CEF E(y|x) as follows:

E(y|x)=

∫ 100

0

rf(x,r)dr (C.2)

where f(x,r) is the probability density function corresponding to the CDF in Equation C.1, when the conditioning

variable takes the value x. Note that r in this case represents a child rank. This expression simply denotes that

E(y|x) is the average value from 0 to 100 on the y-axis, holding x fixed.

We do not observe the sample analog of F(x,r) directly. Rather, we observe the sample analog of the following

expression for each of H∗K bin combinations:

P(y≤yh+1

∣∣∣x∈ [xk,xk+1])=
1

xk+1−xk

∫ xk+1

q=xk

F(q,yh+1)dq (C.3)

We denote this sample analog P̂(y≤yh+1

∣∣∣x∈ [xk,xk+1]) as R̂(k,h). Equation C.3 states that the probability that

y is less than yh+1 is the average value of the CDF in that bin. Since x is uniform, we can write its probability

distribution function within the bin as 1
xk+1−xk .

We parameterize each CDF as F (x,r)=S(x,r,γx), where r is the outcome variable, x is the conditioning variable, and

γx is a parameter vector in some parameter space Gx. Similarly let f(x,r)=s(x,r,γx). In our numerical calculation, we

define Gx as [0,1]100, a vector which gives the value of the cumulative distribution function at each of 100 conditioning

variable percentiles on the y-axis, for a given value of x. Put otherwise, holding x fixed, we seek the 100-valued column

vector γx which contains the value of the CDF at each of the 100 possible y values: y=1,y=2,...,y=100. As a result, γx

must lie within [0,1]100. Note that there are as many vectors γx as there are possible values for the conditioning variable

x. If we discretize also x as 1,2,...,100, then we define the matrix of 100 CDFs, indexed by x, as γ100=[γ1 γ2 ...γ100].

To be explicit, γ100 is a 100×100 matrix constructed by setting its xth column as γx. We write that γ100∈G100.

We also introduce a new monotonicity condition for this context. In this set up, monotonicity implies that the

outcome distribution for any value of x first-order stochastically dominates the outcome distribution at any lower

value of x. Put otherwise,

s(x,r,gx) is weakly decreasing in x (Monotonicity)

In the mobility context, this statement implies that the child rank distribution of a higher-ranked parent stochastically

dominates the child rank distribution of a lower-ranked parent.58,59

58Dardanoni et al. (2012) find that a similar conditional monotonicity holds in almost all mobility tables in 35
countries.

59A stronger monotonicity assumption would require that the hazard function is decreasing in x. This is equivalent
to stating that the CDF must be weakly decreasing in x conditional upon x being above some value. In the mobility
case, for example, the stronger assumption would imply that conditional on being in high school, a child of a better
off parent must have a higher latent rank than the child of a worse off parent.
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The following minimization problem defines the set of feasible values of γx for each value x:

Γ=argmin
g∈G100

{
K∑
k=1

H∑
h=1

(∫ xk+1

q=xk

S(q,h,gq)dq−R̂(k,h)

)2
}

(C.4)

such that

s(x,r,gx) is weakly decreasing in x (Monotonicity)

1

100

100∑
x=1

S(x,r,gx)=r (Budget Constraint)

S(x,0,gx)=0 (End Points)

S(x,100,gx)=1.

In the above minimization problem, g is a candidate vector satisfying the conditions; each gx describes the candidate

CDF holding x fixed. A valid set of cumulative distribution functions is one that minimizes error with respect to all of

the observed data points and obeys the monotonicity condition. The budget constraint requires that the weighted

sums of CDFs across all conditioning groups must add up to the population CDF. For example, J% of children

must on average attain less than or equal to the Jth percentile. The constraints on the end points of the CDF are

redundant given the other constraints, but are included to highlight how the end points constrain the set of possible

outcomes. For simplicity, we have not included a curvature constraint, but such a constraint would be a sensible

further restriction on the feasible parameter space in many contexts.

Once a set of candidate CDFs have been identified, they have a one-to-one correspondence with the CEF given

an interval censored conditioning variable, (described by Equation C.2), and thus with any function of the CEF.

These statistics can be numerically bounded as in Section 2.

This problem is computationally more challenging than the problem of censoring only in the conditioning variable

dealt with in Section 2. In the case of the rank distribution, if we discretize both outcome and conditioning variables

into 100 separate percentile bins, then the problem has 10,000 parameters and 10,000 constraints, and an additional

9800 curvature constraint inequalities if desired. This problem proved computationally too difficult to resolve.

Restricting the set of discrete bins (e.g. to deciles) is unsatisfying because it requires significant rounding of the raw

data which could substantively affect results. We proceed instead by taking advantage of characteristics that are

specific to the problem of intergenerational mobility.
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C.2 Best and Worst Case Mobility Distributions

Our goal is to bound the parent-child rank CEF given interval censored data on both parent and child ranks. In

this section, we take a sequential approach to the double-censoring problem. We use additional information about

the structure of the mobility problem to obtain worst- and best-case parent CDFs for intergenerational mobility.

From these cumulative distribution functions, we can obtain worst- and best-case CEFs using Equation C.2. First,

we calculate bounds on the average value of the child rank in each child rank * parent rank cell. We then apply

the methods from Section 2 on the best and worst case bounds; the union of resulting bounds describes the bounds

on the mobility statistic of interest. We focus on the rank-rank gradient and on µ500 .

Given data where child rank is known only to lie in one of h bins, there are two hypothetical scenarios that describe

the best and worst cases of intergenerational mobility. Mobility will be lowest if child outcomes are sorted perfectly

according to parent outcomes within each child bin, and highest if there is no additional sorting within bins.60

Consider a simple 2x2 case. In the 1960s birth cohort in India, 27% of boys attained less than two years of education,

the lowest recorded category. 55% of these had fathers with less than two years of education, and 45% had fathers

with two or more years of education. We do not observe how the children of each parent group are distributed within

the bottom 27%. For this case, mobility will be lowest if children of the least educated parents occupy the bottom

ranks of this bottom bin, or ranks 0 through 15, and children of more educated parents occupy ranks 16 through

27. Mobility will be highest if parental education has no relationship with rank, conditional on the child rank bin.

We do not consider the case of perfectly reversed sorting, where the children of the least educated parents occupy the

highest ranks within each child rank bin, as it would violate the stochastic dominance condition (and is implausible).

Appendix Figure C1 shows two set of CDFs that correspond to these two scenarios for the 1960–69 birth cohort. In

Panel A, children’s ranks are perfectly sorted according to parent education within bins. Each line shows the CDF of

child rank, given some father education. The points on the graph correspond to the observations in the data—the value

of each CDF is known at each of this points. Children below the 27th percentile are in the lowest observed education bin.

Within this bin, the CDF for children with the least educated parents is concave, and the CDF for children with the most

educated parents is convex—indicating that children from the best off families have the highest ranks within this bin.

This pattern is repeated within each child bin. Panel B presents the high mobility scenario, where children’s outcomes

are uniformly distributed within child education bins, and are independent of parent education within child bin.

According to Equation C.2, each of these CDFs corresponds to a single mean child outcome in a given parent

bin, or Y =E(y|x∈ [xk,xk+1]). From these expected values, we can then calculate bounds on any mobility statistic,

as in Sections 2 and 5. Table C1 shows the expected child rank by parent education for the high and low mobility

60Specifically, these scenarios respectively minimize and maximize both the rank-rank gradient and µx0 for any
value of x. To minimize and maximize px, a different within-bin arrangement is required for every x. We leave
this out for the sake of brevity, and because bounds on px are minimally informative even with uncensored y.
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scenario, as well as bounds on the rank-rank gradient and on µ500 . Taking censoring in the child distribution into

account widens the bounds on all parameters. The effect is proportionally the greatest on the interval mean measure,

because it was so precisely estimated before—the bounds on µ500 approximately double in width when censoring

of son data is taken into account.

These bounds are very conservative, as the worst case scenario is unlikely to reflect the true uncensored joint parent-

child rank distribution, due to the number and sharpness of kinks in the CDFs in Panel A of Figure C1. A curvature

constraint on the CDF would move the set of feasible solutions closer to the high mobility scenario. We next draw on

additional data on children, which suggests that the best case mobility scenario is close to the true joint distribution.

C.3 Estimating the Child Distribution Within Censored Bins

Because we have additional data on children, we can estimate the shape of the child CDF within parent-child education

bins using rank data from other outcome variables that are not censored. Under the assumption that latent education

rank is correlated with other measures of socioeconomic rank, this exercise sheds light on whether Panel A or Panel

B in Figure C1 better describes the true latent distribution.

Figure C2 shows the result of this exercise using wage data from men in the 1960s birth cohort. To generate

this figure, we calculate children’s ranks first according to education, and then according to wage ranks within each

education bin.61 The solid lines depict this uncensored rank distribution for each father education; the dashed gray

lines overlay the estimates from the high mobility scenario in Panel B of Figure C1.

If parent education strongly predicted child wages within each child education bin, we would see a graph like

Panel A of Figure C1. The data clearly reject this hypothesis. There is some additional curvature in the expected

direction in some bins, particularly among the small set of college-educated children, but the distribution of child

cumulative distribution functions is strikingly close to the high mobility scenario, where father education has little

predictive power over child outcomes after child education is taken into account. The last row of Table C1 shows

mobility estimates using the within-bin parent-child distributions that are predicted by child wages; the mobility

estimates are nearly identical to the high mobility scenario. This result supports the assumption made in Section 5

that latent child rank within a child rank bin is uncorrelated with parent rank.

Note that there is no comparable exercise that we can conduct to improve upon the situation when parent ranks

are interval censored, because we have no information on parents other than their education, as is common in mobility

studies. If we had additional information on parents, we could conduct a similar exercise. The closest we can come

to this is by observing the parent-child rank distribution in countries with more granular parent ranks, as we did

61We limit the sample to the 50% of men who report wages. Results are similar if we use household income,
which is available for all men. Household income has few missing observations, but in the many households where
fathers are coresident with their sons, it is impossible to isolate the son’s contribution to household income from
the father’s, which biases mobility estimates downward.
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in Section 2. The results in that section suggest that interval censoring of parent ranks does indeed mask important

features of the mobility distribution.

An additional factor that makes censoring in the child distribution a smaller concern is the fact that children

are more educated than parents in every cohort, and thus the size of the lowest education bin is smaller for children

than for parents. This result is likely to be true in many other countries where education is rising. Of course, in

other contexts, we may lack additional information about the distribution of the x and y variable within bins, and

researchers may prefer to work with conservative bounds as described in C.2.
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Figure C1
Best- and Worst-Case Son CDFs

by Father Education (1960-69 Birth Cohort)

Panel A: Lowest Feasible Mobility
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Panel B: Highest Feasible Mobility
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Figure C1 shows bounds on the CDF of child education rank, separately for each father education group. The lines

index father types. Each point on a line shows the probability that a child of a given father type obtains an education

rank less than or equal to the value on the X axis in the national education distribution. The large markers show the

points observed in the data.
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Figure C2
Son Outcome Rank CDF

by Father Education (1960-69 Birth Cohort)
Joint Education/Wage Estimates
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Figure C2 plots separate son rank CDFs separately for each father education group, for sons born in the

1960s in India. Sons are ranked first in terms of education, and then in terms of wages. Sons not reporting

wages are dropped. For each father type, the graph shows a child’s probability of attaining less than or

equal to the rank given on the X axis.

Table C1
Mobility Estimates under Double-Censored CEF

Upward Interval Rank-Rank
Mobility (µ500 ) Gradient (β)

Low mobility scenario [32.33, 35.90] [0.55, 0.80]
High mobility scenario [35.86, 38.80] [0.45, 0.67]
Wage imputation scenario [35.79, 38.70] [0.46, 0.67]

Table C1 presents bounds on µ500 and the rank-rank gradient β under three different sets of assumptions about child
rank distribution within child rank bins. The low mobility scenario assumes children are ranked by parent education
within child bins. The high mobility scenario assumes parent rank does not affect child rank after conditioning on
child education bin. The wage imputation predicts the within-bin child rank distribution using child wage ranks and
parent education.
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D Appendix D: Data Sources

D.1 Data on Mortality in the United States

For comparability, we follow the data construction procedure used in Case and Deaton (2017). We

are grateful that these authors shared software for data construction on their paper’s website to

simplify this process.

Death records come from the CDC WONDER database. We have deaths counts by race, gender,

and education from 1992–2015, as well as information on cause of death. To obtain mortality rates

by year, we obtain the number of people in each age-race-gender-education cell from the Current

Population Survey.

The death records contain the universe of deaths in the U.S. The CPS only interviews people who

are not institutionalized — e.g., not in a prison or health institution. As a result, the denominator

used by Case and Deaton (2017) is slightly smaller than the true denominator. To account for

people who are institutionalized, we obtain the number of institutionalized people missing from the

CPS in the U.S. Census for 1990 and 2000, and the American Communities Survey for 2005–2015.

For non-Census years prior to 2005, we linearly impute the number of institutionalized people in

each age-race-gender-education cell; e.g., for 1995, we take the midpoint of the observed number

of institutionalized people in 1990 and 2000. For instance, among women ages 50–54 in 1992, just

under 0.4% with a high school degree or less are institutionalized. Among that group, mortality

falls from 460.8 to 459.0 once we include institutionalized people in the denominator.

The mortality records are characterized by some data with missing education. We follow standard

practice in assuming that the education data are missing at random; we assign the missings the

educations of the observed educations in the age-race-gender cell whose deaths we observe in that

year. Case and Deaton (2017) drop several states that inconsistently report education. After 2005,

state identifiers are available only in restricted access data, so we do not yet take this step, and

we apply the imputation procedure described above for all people. We have applied for the restricted

data from the National Center for Health Statistics, and the revision of this paper will use only
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the states with constant data. To predict whether these exclusions are likely to affect our results,

we calculated bounds on mortality change from 1992-2004 for all states, and for the subset of states

with consistent reporting. Estimates of mortality change differed by at most 0.2%, suggesting that

exclusion of these states in all periods will also minimally affect results.

D.2 Intergenerational Mobility: Matched Parent-Child Data from India

To estimate intergenerational educational mobility in India, we draw on two databases that re-

port matched parent-child educational attainment. The first is an administrative census dataset

describing the education level of all parents and their coresident children. Because coresidence-based

intergenerational mobility estimates may be biased, we supplement this with a representative sample

of non-coresident father-son pairs. We focus on fathers and sons because we do not have data on

non-coresident mothers and/or daughters. This section describes the two datasets.

The Socioeconomic and Caste Census (SECC) was conducted in 2012, to collect demographic and

socioeconomic information determining eligibility for various government programs.62 The data was

posted on the internet by the government, with each village and urban neighborhood represented

by hundreds of pages in PDF format. Over a period of two years, we scraped over two million files,

parsed the embedded data into text, and translated the text from twelve different Indian languages

into English.63 The individual-level data that we use describe age, gender, and relationship with

household head. Assets and income are reported at the household rather than the individual level,

and thus cannot be used to estimate mobility. The SECC provides the education level of every

parent and child residing in the same household. Sons who can be matched to fathers through

coresidence represent about 85% of 20-year-olds and 7% of 50-year-olds. Education is reported in

seven categories.64 To ease the computational burden of the analysis, we work with a 1% sample

of the SECC, stratified across India’s 640 districts.

62It is often referred to as the 2011 SECC, as the initial plan was for the survey to be conducted between June
and December 2011. However, various delays meant that the majority of surveying was conducted in 2012. We
therefore use 2012 as the relevant year for the SECC.

63Additional details of the SECC and the scraping process are described in Asher and Novosad (2019).
64The categories are (i) illiterate; (ii) literate without primary (iii) primary; (iv) middle; (v) secondary (vi) higher

secondary; and (vii) post-secondary.
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We supplement the SECC with data from the 2011-2012 round of the India Human Development

Survey (IHDS). The IHDS is a nationally representative survey of 41,554 households in 1,503 villages

and 971 urban neighborhoods across India. Crucially, the IHDS solicits information on the education of

fathers of household heads, even if the fathers are not resident, allowing us to fill the gaps in the SECC

data. Since the SECC contains data on all coresident fathers and sons, our main mobility estimates

use the IHDS strictly for non-coresident fathers and sons. IHDS contains household weights to make

the data nationally representative; we assign constant weights to SECC, given our use of a 1% sample.

By appending the two datasets, we can obtain an unbiased and nationally representative estimate of

the joint parent-child education distribution.65 IHDS reports neither the education of non-coresident

mothers nor of women’s fathers, which is why our estimates are restricted to fathers and sons.

IHDS records completed years of education. To make the two data sources consistent, we recode

the SECC into years of education, based on prevailing schooling boundaries, and we downcode the

IHDS so that it reflects the highest level of schooling completed, i.e., if someone reports thirteen

years of schooling in the IHDS, we recode this as twelve years, which is the level of senior secondary

completion.66 The loss in precision by downcoding the IHDS is minimal, because most students

exit school at the end of a completed schooling level.

We estimate changes in mobility over time by examining the joint distribution of fathers’ and

sons’ educational attainment for sons in different birth cohorts. All outcomes are measured in 2012,

but because education levels only rarely change in adulthood, these measures capture educational

investments made decades earlier. We use decadal cohorts reflecting individuals’ ages at the time

of surveying. To allay concerns that differential mortality across more or less educated fathers and

sons might bias our estimates, we replicated our analysis on the same birth cohorts using the IHDS

2005. By estimating mobility on the same cohort at two separate time periods, we identified a

small survivorship bias for the 1950-59 birth cohort (reflecting attrition of high mobility dynasties),

65We verified that IHDS and SECC produce similar point estimates for the coresident father-son pairs that are
observed in both datasets. Point estimates from the IHDS alone (including coresident and non-coresident pairs)
match our point estimates, albeit with larger standard errors.

66We code the SECC category “literate without primary” as two years of education, as this is the number of
years that corresponds most closely to this category in the IHDS data, where we observe both literacy and years
of education. Results are not substantively affected by this choice.
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but zero bias for the cohorts from the 1960s forward. The fact that mobility in the 1950s is biased

slightly downward only strengthens our conclusions about zero mobility change (see Figure 9).
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